




















convenient to focus on just one aspect of their development at a
time.

We sometimes wondered whether the variables we used to deal
with the complexity of human behaviour were ‘real’ in the sense
that temperature and weight were ‘real’. Did children really differ
in reading ability? Were differences in children’s reading abilities
‘real’ in the sense that differences in objects’ potential energy or
momentum were ‘real’?

Once again, the important question was whether a variable such
as reading ability was useful in practice. Common experience
suggested that children did differ in their reading abilities and that
individuals’ reading abilities did develop over time. But was the
idea of a variable of increasing reading competence supported by
closer observations of reading behaviour? Did this idea help us to
understand and promote reading development? As with all
variables, the most important question about dimensions of
human variability was whether they were helpful in dealing with
the complexities of human experience.

In summary, our decision to focus attention on one aspect of
variability at a time was a significant breakthrough in the
management of complexity. The conceptualisation of variables
was our first step towards measurement.

Inventing Units

The second step towards measurement was the invention of units
representing equal amounts of the variable being measured.
Important human progress in counting units was made in relation
to the most intangible of variables: time.

Time, unlike other variables such as length and weight, could not
be manipulated and was much more difficult to conceptualise.
But, amazingly, man found himself living inside a giant clock.
By carefully inspecting the rhythmijcal ticking of the clock’s
mechanism, man learned how to measure time by counting units of
time.

The regular rotation of the Earth on its axis marked out equal
amounts of time and provided humans with a basic unit of
measurement: the day. By counting days, we were able to replace
qualitative descriptions of time (‘a long time ago’) with
quantitative descriptions (‘five days ago’). This was the second
requirement for measurement: a unit of measurement. A unit was a
fixed amount of a variable that could be repeated without
modification and counted. The invention of units allowed the
question frow much? to be answered by counting how sany units.

The regular revolution of the moon around the Earth provided a
larger unit of time, the ‘moon’ or lunar month. And the regular
revolution of the Earth around the sun led to the seasons and a still
larger unit, the year. The motion of these heavenly bodies provided
us with an instrument for marking off equal amounts of time and
taught us that units could be combined to form larger units, or
subdivided to form still smatler units (hours, minutes, seconds).




Ancient civilisations created ways of tabulating their
measurements of time in calendars chiselled in stone, and used
moving shadows to invent units smaller than the day. By
observing the rhythmical motion of the giant clock in which we
lived, humans probably developed a sophistication in the
measurement of time before we developed a similar sophistication
in the measurement of more tangible variables such as length,
weight and temperature.

The invention of units of measurement was equally crucial to
accurate communication about distances. In man’s early history, ‘a
long way’ became ‘2-days walk’, again allowing the question how
much? to be answered by counting how many units. For shorter
distances, we counted paces. One thousand paces we called a mile
{mil). Other units of length we defined in terms of parts of the
body - the foot, cubit (length of forearm), hand - or in terms of
objects that could be carried and placed end to end: the chain; the
link (1/100 of a chain); the rod, perch or pole (a pole); and the yard
(a stick),

Our recent and continuing use of many of these units is a reminder
of how recently we mastered the measurement of length. The same
is true of the units we use to measure some other variables (eg,
‘stones’ to measure weight). And still other units were invented so
recently that we know the names of their inventors (eg, Celsius
and Fahrenheit).

Pursuing Objectivity

The invention of units such as paces, feet, spans, cubits, chains,
stones, rods and poles which could be repeated without
modification provided humans with instruments for measuring,
However, an important question in making measurements was
whether different instruments provided numerically equivalent
measures of the same object.

If two instruments did not provide numerically equivalent
measures, then one possibility was that they were not calibrated
in the same unit. It was one thing to agree on the use of a foot
to measure length, but whose foot? What if my stone was heavier
than yours? What if your chain was longer than mine?
A fundamental requirement for useful measurement was that the
resulting measures had to be independent of the measuring
instrument and of the person doing the measuring: in other
words, they had to be objective.

To achieve this kind of objectivity, it was necessary to establish and
share common, or standard, units of measurement. For example,
in 1790 it was agreed to measure length in terms of a ‘metre’,
defined as one ten-millionth of the distance from the North Pole to
the Equator. After the 1875 Treaty of the Metre, a metre was re-
defined as the length of a platinum-iridium bar kept at the
International Bureau of Weights and Measures near Paris, and
from 1983 a metre was defined as the distance travelled by light in
a vacuum in 1/299,792458 of a second. All measuring sticks
marked out in metres and centimetres were calibrated against this
standard unit. Bureaus of weights and measures were established
to ensure that standards were maintained and that instruments
were calibrated accurately against standard units. In this way,
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measures could be compared directly from instrument to
instrument ~ an essential requirement for accurate communication
and for the successful conduct of commerce, science and industry.

If two instruments did not provide numerically equivalent
measures, then a second, more serious possibility was that they
were not providing measures of the same variable. The simplest
indication of this problem was when two instruments produced
significantly different orderings of a set of objects.

For example, two measuring sticks, one calibrated in centimetres,
the other calibrated in inches, provided different numerical
measures of an object. But when a number of objects were
measured in both inches and centimetres and the measures in
inches were plotted against the measures in centimetres, the
resulting points approximated a straight line (and with no
measurement errox, would have formed a perfect straight line).
In other words, the two measuring sticks provided consistent
measures of lengti.

However, if on one instrument Object A was measured to be
significantly greater than Object B, but on a second instrument
Object B was measured to be significantly greater than Object A,
then that would be evidence of a basic inconsistency. What should
we conclude about the relative standings of Objects A and B on our
variable?

A fundamental requirement for measurement was that it
should not matter which instrument was used, or who was doing
the measuring (ie, the requirement of objectivity/impartiality).
Only if different instruments provided consistent measurements
was it possible to achieve this kind of objectivity in our measures.

In Summary

Measurement is one of mankind’s most powerful and significant
inventions.

Measurement begins with the decision to pay attention to
only one way in which objects or persons differ. This decision
to focus on just one aspect of variability allows objects to
be conceptualised as having a single order on a variable
("dimension’). The conceptualisation of a variable as a continuum
of increasing amounts is the first step towards measurement.

The second step towards measurement is the invention of a unit.
A unit is an amount of a variable that can be repeated without
modification and counted. The use of a unit ensures that equal
numerical differences represent equal amounts of the variable.

The third and final step is to ensure objectivity in measurement.
Measures are objective when they do not depend on a knowledge
of the particular instrument used to obtain them, or of the person
involved in the measuring process. The test of objectivity is
whether equivalent numerical measures are obtained with
different instruments and with different persons doing the
measuring,.
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Educational Variables

In educational settings it is common to separate out and pay
attention to one aspect of a student's development at a time.

When a teacher seeks to establish the stage a student has reached
in his or her learning, to monitor that student’s progress over time,
or to make decisions about the most appropriate kinds of learning
experiences for individuals, these questions usually are addressed
in relation to o#e area of learning at a time. For example, it is usual
to assess a child’s attainment in numerical reasoning separately
from the many other dimensions along which that child might be
progressing {such as reading, writing, and spoken language), even
though those aspects of development may be related.

Most educational variables can be conceptualised as aspects of
learning in which students make progress over a number of years.
Reading is an example. Reading begins in early childhood, but
continues to develop through the primary years as children
develop skills in extracting increasingly subtle meanings from
increasingly complex texts. And, for most children, reading
development does not stop there: it continues into the secondary
years.

Teachers and educational administrators use measures of student
progress and attainment for a wide variety of purposes.

Measures on educational variables are sought whenever there is a
desire to ensure that limited places in educational programs are
offered to those who are most deserving and best able to benefit
from them. For example, places in medical schools are limited
because of the costs of providing medical programs and because of
the limited need for medical practitioners in the community.
Medical schools seek to ensure that places are offered to applicants
on the basis of their likely success in medical school and, where
possible, on the extent to which applicants appear suited to
subsequent medical practice. To allocate places fairly, medical
schools go to some trouble to identify and measure relevant
attributes of applicants. Universities and schools offering
scholarships on the basis of academic merit similarly go to some
trouble to identify and measure candidates on appropriate
dimensions of achievement.

Measures of educational achievement and competence are sought
at the completion of education and training programs. Has the
student achieved a sufficient level of understanding and
knowledge by the end of a course of instruction to satisfy the
objectives of that course? Has the student achieved a sufficient
level of competence to be allowed to practise {eg, as an accountant,
a lawyer, a paediatrician, an airline pilot)? Decisions of this kind
usually are made by first identifying the areas of knowledge, skill
and understanding in which some minimum Jevel of competence
must be demonstrated, and by then measuring candidates’ levels
of competence or achievement in each of those areas.
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Measures of educational achievement also are required to
investigate ways of improving student learning: for example,
to evaluate the impact of particular educational initiatives,
to compare the effectiveness of different ways of structuring and
managing educational delivery, and to identify the most effective
teaching strategies and most cost-effective ways of lifting the
achievements of under-achieving sections of the student
population. Most educational research, including the evaluation
of educational programs, depends on reliable measures of aspects
of student learning. Some of the most informative research studies
track student progress on one or more variables over a number of
years (e, longitudinal studies of progress).

The intention to separate out and measure variables in education
is made explicit in the construction and use of educational tests.
The intention to obtain only one test score for each student so that
all students can be placed in a single score order reflects the
intention to measure students on just one variable, and is called
the intention of unidimensionality. On such a test, higher scores
are intended to represent more of the variable that the test is
designed to measure, and lower scores are intended to represent
less. The use of an educational test to provide just one order of
students along an educational variable is identical in principle to
the intention to order objects along a single variable of increasing
heaviness (see page 3).

Occasionally, tests are constructed with the intention not of
providing one score, but of providing several scores. For example,
a test of reasoning might be constructed with the intention of
obtaining both a verbal reasoning score and a quantitative
reasoning score for each student. Or a mathematics achievement
test might be constructed to provide separate scores in Number,
Measurement and Space. Tests of this kind are really composite
tests. The set of verbal reasoning items constitutes one measuring
instrument; the set of quantitative reasoning items constitutes
another. The fact that both sets of items are administered in the
same test sitting is simply an administrative convenience.

Not every set of questions is constructed with the intention that ‘
the questions will form a measuring instrument. For example,
some questionnaires are constructed with the intention of
reporting responses to each question separately, but with no
intention of combining responses across questions {(eg, How many
hours on average do you spend waltching television each day?
What type of book or magazine do you most like to read?).
Questions of this kind may be asked not because they are intended
to provide evidence about the same underlying variable, but
because there is an interest in how some population of students
responds to each question separately. The best check on whether a
set of questions is intended to form a measuring instrument is to
establish whether the writer intends to combine responses to
obtain a single score for each student.

The development of every measuring instrument begins with
the concept of a variable. The table on page 8 shows
some of the many hundreds of variables listed in the
Mental Measurements Yearbook for which measuring instruments
(tests and questionnaires) have been constructed.




abstract reasoning
achievement orientation
adding fractions
adventurousness
aggression

altruism

anxiety

arithmetic ability

artistic expression

asocial behaviour
assertiveness
attentiveness

attitude toward mathematics
auditory perception

body satisfaction
business judgement
cautiousness

clerical accuracy
cognition of semantic relations
collaborating
communicating information
competitiveness
comprehending dialogues
computer programming
conscientiousness
copying shapes

creativity

critical thinking

decision making
depression

dexterity

division of decimals

ego strength

emotional resilience
empathy

expressiveness
extroversion

fine motor function
following directions

goal orientation

gross motor function
handwriting
hyperactivity
impulsiveness
interpersonal competency
intuitive thinking
kindergarten readiness
language comprehension
leadership potential
letter recognition

life satisfaction

listening comprehension
manual dexterity
mathematical understanding
memory for sentences
narrative writing
nutrition knowledge

oral reading

perception of objects in space
personal self-care
physical prowess

pitch discrimination
problem-solving ability
proofreading

reading ability

reasoning

relationship identification
sales comprehension
school adjustment

school readiness
self-confidence

sociability

spelling

stress tolerance

tactile differentiation
typing speed

verbal reasoning

visual discrimination
vocabulary knowledge

written expression




The intention underlying each of these instruments ~ and many
others reported in the educational and psychological
measurement fiterature — is to assemble a set of items capable of
providing evidence about the variable of interest, and then to
combine responses to those items to obtain measures of the
variable. This intention raises the question of whether the set of
items assembled to measure any given variable work together to
form a useful measuring instrument.
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Equal Intervais?

When a student takes a test, the outcome is a test score, intended
as a measure of the variable that the test was designed to measure.
Test scores provide a single order of test takers — from the lowest
scorer (the person who answers fewest items correctly or who
agrees with fewest statements on a questionnaire) to the highest
scorer. Because scores order students along a variable, they are
described as having ‘ordinal’ properties.

It is common to assume that test scores also have ‘interval’
properties: that is, that equal differences in scores represent equal
differences in the variable being measured (eg, that the difference
between scores of 25 and 30 on a reading comprehension test
represents the same difference in reading ability as the difference
between scores of 10 and 15). The attempt to attribute interval
properties to scores is an attempt to treat them as though they
were measures similar to measures of length in centimetres or
measures of weight in kilograms. But scores are not counts of a
unit of measurement, and so do not share the interval properties
of measures.

Scores are counts of items answered correctly and so depend on
the particulars of the items counted. A score of 16 out of 20 easy
items does not have the same meaning as a score of 16 out of 20
hard items. In this sense, a score is like a count of objects.
A count of 16 potatoes is not a ‘measure’ because it is not a count
of equal units. Sixteen small potatoes do not represent the same
amount of potato as 16 large potatoes. When we buy and sell
potatoes, we use and count a unit (kilogram or pound) which
maintains its meaning across potatoes of different sizes.

A second reason why ordinary test scores do not have the
properties of measures is that they are bounded by upper and
lower limits. It is not possible to score below zero or above
the maximum possible score on a test. The effect of these so-called
‘floor’ and ‘ceiling’ effects is that equal differences in test scores




do not represent equal differences in the variable being measured.
On a 30-item mathematics test, a difference of one score point at
the extremes of the score range (eg, the difference between scores
of 1 and 2, or between scores of 28 and 29} represents a larger
difference in mathematics achievement than a difference of one
score point near the middle of the score range (eg, the difference
between scores of 14 and 15).

Although test scores do not have interval properties, it is
(mistakenly) common to treat them as though they do. Interval
properties are assumed whenever number-right scores are used in
simple statistical procedures such as the calculation of means
and standard deviations, or in more sophisticated statistical
procedures such as regression analyses or analyses of variance. In
these common procedures, users of test scores treat them as
though they have the interval properties of inches, kilograms or
hours.

Objectivity

Every test constructor knows that, in themselves, individual test
items are unimportant. No item is indispensable: items are
constructed merely as opportunities to collect evidence about
some variable of interest, and every test item could be replaced by
another, similar item, More important than individual test items is
the variable about which those items are intended to provide
evidence.

A particular item developed as part of a calculus test, for example,
is not in itself significant. Indeed, students may never again
encounter and have to solve that particular item. The important
question about a test item is not whether it is significant in ifs own
right, but whether it is a useful vehicle for collecting evidence
about the variable to be measured (in this case, calculus ability).

Another way of saying this is that it should not matter to our
conclusion about a student’s ability in calculus which particular
items the student is given to solve. When we construct a test it
is our intention that the results will have a generality beyond
the specifics of the test items. This intention is identical to our
intention that meastres of height should not depend on the details
of the measuring instrument (eg, whether we use a steel rule, a
wooden rule, a builder’s tape measure, a tailor’s tape, etc). Itisa
fundamental intention of all measures that their meaning should
relate to some general variable such as height, temperature,
manual dexterity or empathy, and should not be bound to the
specifics of the instrument used to obtain them. (Just imagine
the inconvenience of physical measures if every time they were
reported they had to be accompanied by information about
the particular instrument used to obtain them!)

The intention that measures of educational variables should have
a general meaning independent of the instrument used to obtain
them is especially important when there is a need to compare
results on different tests. A teacher or school wishing to
administer a test prior to a course of instruction (a pre-test) and
then after a course of instruction (a post-test) to gauge the impact
of the course, often will not wish to use the same test on both
occasions, A medical school using an admissions test to select
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applicants for entry often will wish to compare results obtained
on different forms of the admissions test at different test sittings.
Or a school system wishing to monitor standards over time
or growth across the years of school will wish to compare results
on tests used in different years or on tests of different
difficulty designed for different grade levels (eg, third, fourth,
and fifth-grade reading tests).

There are many situations in education in which we seek measures
that are freed of the specifics of the instrument used to obtain them
and so are comparable from one instrument to another.

It is also the intention when measuring educational variables
that the resulting measures should not depend on the persons
doing the measuring. This consideration is especially important
when measures are based on judgements of student work or
performance. To ensure the objectivity of measures based on
judgements it is usual to provide judges with clear guidelines and
training, to provide examples to illustrate rating points (eg,
samples of student writing or videotapes of dance performances),
to use multiple judges, procedures for identifying and dealing
with discrepancies, and statistical adjustments for systematic
differences in judge harshness/leniency.

Although it is clearly the intention that educational measures
should have a meaning freed of the specifics of particular tests,
ordinary test scores (eg, number of items answered correctly) are
completely test-bound. A score of 29 on a particular test does
not have a meaning similar to a measure of 29 centimetres or
29 kilograms. To make any sense of a score of 29 it is necessary to
know the total number of test items: 29 out of 30 items? 29 out of
40?7 29 out of 100? Even knowing that a student scored 29 out of 40
is not very helpful. Success on 29 easy items does not represent the
same ability as success on 29 difficult items. To understand
completely the meaning of a score of 29 out of 40 it would be
necessary to consider each of the 40 items attempted.

A longstanding dilemma in educational testing has been that,
while particular test items are never of interest in themselves, but
are intended only as indicators of the variable of interest, the
meaning of number-right scores is always bound to some
particular set of items. Just as we intend the measure of a student’s
writing ability to be independent of the judges who happen to
assess that student’s writing, so we seek measures of variables
such as numerical reasoning which are neutral with respect to, and
transcend, the particular items that happen to be included in a test.
It is this dilemma thaf modern measurement theory (described in
the next section) resolves.




In Summary

In education, we seek measures on a wide variety of variables.
Reliable measures of educational variables are essential to
successfully evaluating the effectiveness of educational programs,
monitoring educational standards over time, comparing
achievement levels in different education systems, investigating
relationships and influences on educational achievement,
allocating scholarships and places in educational courses,
measuring individual growth over time, and making decisions
about the stage an individual has reached in his or her learning.
Educational measurement always begins with the intention to
estimate students’ standings on some variable of interest.

In education, we assume that test and questionnaire scores have
interval level properties whenever we calculate siraple statistics
such as means and standard deviations and use more
sophisticated procedures such as regression analysis. However,
ordinary test scores, because they are not counts of a unit of fixed
amount, do not have interval properties. Equal differences in
number-right scores do not, in general, represent equal differences
on the variable of interest.

In education, we also intend our measures to have a generality
that extends beyond the specifics of a set of items, and beyond the
particular persens involved in the measuring process. Test items
are not in themselves important: they are simply convenient and
interchangeable opportunities to collect evidence about the
variable a test is designed to measure. However, the meaning of
number-right scores is bound to particular sets of items. Every test
has its unique set of number-right scores — equivalent to every
measuring stick being calibrated in its own unit of length.

The following article describes a measurement model that can be
used to

* establish the extent to which a set of items work together to
provide measures of just one variable;

o define a unif of measurement for the construction of
interval-level measures of educational variables; and

° construct numerical measures which have a meaning
independent of the particular set of items used.
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a model for measuring

The preceding article identified several reasons why ordinary test
scores (counts of items answered correctly) do not have the
properties of ‘measures’ such as lengths in centimetres or
temperatures in degrees Celsius:

o Although the intention in most test development is to produce
a single score for each student (in other words, to construct a
single dimension along which students can be ordered from
lowest to highest), much test development is not accompanied
by an explicit check on the validity of summarising item
responses in a single measure.

e Although the use of test scores in most statistical analyses
assumes they have interval level properties, because test scores
are not counts of a unit of measurement, ordinary test scores are
not on an interval scale.

°  Although our interest in educational testing is always in some
underlying variable — and not in a specific set of items -
ordinary test scores (eg, 28 out of 40) are always bound to a
particular test, and so do not have instrument-neutral meanings
(like 28 centimetres or 28 kilograms).

In short, ordinary ‘number-right’ scores do not have the properties
of measures.

This article describes a method for constructing educational
measures. These measures — when they can be constructed — share
the properties described on pages 6 to 12. In other words, they are:

= estimates of locations on a single variable (unidimensional}
= expressed in a constant unit of measurement  (interval-level)
e freed of the particulars of the instrument used {objective)

Measures with these properties do not come easily. The method
described here requires data (observations) satisfying a
demanding set of requirements, Although educational measures
can be constructed from responses to test items, not every set of
test items meets these requirements and is capable of yielding
unidimensional, interval-level, objective measures.



How does the difficulty of the task (&)
compare with the person’s ability (p)?

One VYariable

The model for measuring described here begins with the intention
to focus on just one aspect of variability (ie, one variable) and to
estimate individuals’ locations on that one variable.

Suppose, for example, that the wvariable of interest is
‘high-jumping’ ability. We might hypothesise that individuals
differ in their high-jumping abilities and that it is possible to
obtain useful estimates of high-jumping ability by observing
performances on some relevant ‘high-jumping’ tasks. Whether
this idea is supported in practice will depend on the extent to
which performances on the tasks we use are consistent with the
proposition that individuals differ along a single dimension of
high-jumping ability.

The notion of a high-jumping variable is represented in the picture
on the next page. In this picture, high-jumping ability is imagined
to increase up the page. The height of the bar determines the
task difficulty, represented by the Greek letter delta (8). Along this
continuum of increasing difficulty, high-jumping abilities () of
individuals also might be mapped. One individual’s imagined
ability =7 is marked.

Several observations can be made about this picture.

First, the high-jumping abilities (B) of individuals and the
difficulties (8) of high-jumping tasks can be conceptualised as
positions along the same continuum. Easier tasks and individuals
with lower abilities will be located towards the bottom of the
continuum; harder tasks and individuals with higher abilities will
be located towards the top.

Second, the high-jumping ability of this individual has been
labelled with the Greek letter B (beta) to reflect the fact that this
person’s ability can never be known exactly — it can only be




A scale of increasing difficulty showing one person’s
level of ability ()

imagined and then estimated from observations of the person’s
performances. The more high-jumping tasks the person attempts,
the more information we will have, and the more confidence we
will have in our estimate.

Third, this high-jumping variable has been marked out
(optimistically) in what appear to be equal units. To develop
measures of high-jumping ability, we require a constant unit of
high-jumping ability.

Planning Observations

To measure individuals on a variable, it is necessary to assemble
evidence relevant to that variable. In the case of high-jumping
ability, evidence in the form of observations of success or failure on
a number of high-jumping tasks is likely to provide an appropriate
basis for estimating individuals’ abilities. For other variables, the
most appropriate evidence might be collected using paper and
pen tasks, or by judging portfolios of work, completed projects, or
products such as items of technology or works of art.

To estimate a person’s location on a variable it usually is not
sufficient to observe the person’s performance on, or response
to, just one task. Success or failure on a single high-jumping task
or a single question on a reading test provides very limited
information about an individual’'s ability. Reliable measures
require multiple observations.




Measurement also requires observations under controlled
conditions. The idea that individuals differ in high-jumping ability
may originally have been developed from casual observations
of people leaping over logs, rocks, hedges and fences. But to
compare {and measure) high-jumping ability, we would not ask
some individuals to jump a fence, others a hedge, and still others
a rope. Rather, we would standardise the conditions of obser-
vation to minimise the influence of factors irrelevant to the
variable of interest. The same is true of all measurement. For
example, when we measure the heights of children, we measure
them in a controlled and artificial situation — shoes off, chin up,
and back to a wall.

Records of Observations

Once a decision has been made about the assessment method to
be used, a decision is required about the observations or judge-
ments to be recorded. Here there are several possibilities. One
possibility is to record ratings of individuals’ performances or
work. Judges’ ratings commonly are used in the assessment of
performances in areas such as gymnastics, public speaking, diving
and instrumental music, in the assessment of student writing, and
in assessing products of student work in technology and art. A
second possibility is to use a system of partial credit scoring to
identify students who give partially correct answers or who are
partially successful in solving a problem. A third possibility is to
use diclotormous scoring to record success or failure on a task. For
example, students’ responses to test questions often are recorded
as either right or wrong. Individuals’ attempts to clear a high-
jump bar also are recorded dichotomously {cleared / missed).

It is usual to tabulate records of observations. The following table
shows how a set of high-jump records might be tabulated
for  persons, Each person’s results are recorded in one row of the
table. Individuals are assumed to have different abilities
By B B3, ... - Bny). Each column corresponds to a particular height
of the bar (with difficulty ) and the outcome of each attempt is
recorded as either 1 (success) or 0 (failure).

Tasks
5 & & 8 & .. 8,
B, 1 1 1 1 0 0
B, 1 1 0 1 0 0
B, 1 1 1 1 0 0
B, 1 1 0 0 0 0
Bs 1 0 1 0 1 0

B 1 [ 1 [ 01 |1 0
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A Measurement Model

The measurement model developed by Danish mathematician
Georg Rasch provides a basis for estimating a person’s ability
B from that person’s row of recorded performances. The model
proposes a mathematical relationship between a person’s ability ,
the difficulty & of the task being attempted, and the probability Py
of the person succeeding on that task.

This mathematical relationship is shown in the following picture.

12 ;

11

Height of bar &

0 2 4 6 8 1
Probability of success
P

For a person with ability p, the modelled probability of
success P, decreases with increasing task difficulty é.

This picture shows how, in the Rasch model, a person’s probability
of success Py decreases with increasing task difficulty. The
relationship is shown here for a person of ability f=7. The more
difficult the task (ie, the higher the bar), the lower the person’s
modelled probability of success.

When the result of a person’s attempt at a task is scored 1 for
success or 0 for failure, the person’s probability of succeeding Py
and probability of failing Py sum to one (F1+Pg=1).

Expressed mathematically, the Rasch model gives the probability
P; of a person with ability f succeeding on a task of difficulty d as:

P; = exp(f-8) / 1+exp(B-8)

Georg Rasch (1901—1980)



Notice that the probability of success P; depends on B-8
(in other words, on how far the bar is from the person’s level of
ability). When the bar is set at the person’s ability, §-8=0, and

P1= exp(0) / 1+exp(0) = 0.5

A Unit of Measurement
The Rasch model can be rearranged as:
B -8&= In(P/Py)

where the unit in which B and § are expressed is called a ‘logit’.
When the Rasch model is used to construct measures of ability,
the resulting measurement variable is calibrated in logits.

The table on this page shows the modelled probability P; of a
person with ability B=7 succeeding on tasks with difficulties &
ranging from 2 to 12 logits.

The Key to Objectivity

A fundamental intention in all measurement is that measures of a
variable should be independent of the details of the particular
instrument used to obtain them. In educational measurement, our
interest always is in the variable (ie, construct) to be measured,
and not in any particular item or set of items. Every test is simply
a convenient sample of many possible items that could be used in
the collection of evidence about that variable.

At the most elementary level this intention means that, if we were
to consider two persons A and B with assumed abilities B4 and Bp
on the variable of interest, then our estimate of the difference
Ba-Bp between these two persons should not depend on which
particular test items we happened to use to estimate this
difference. If on one set of items person A was estimated to be, say,
1 logit more able than person B, then on any other set of items
measuring that variable, person A should be estimated to be 1 logit
more able than person B (within the limits of measurement error).

In our high-jumping analogy, we would hope that our estimate of
the relative high-jumping abilities of persons A and B had some
generalisable meaning — that its meaning was not limited to the
few observations we had made or by the particular heights at
which we had set the bar. Only if our estimates of the relative
abilities of individuals are generalisable to tasks beyond those
used to obtain them do we have any hope of constructing
‘measures’ of variables.

When two persons A and B attempt the same dichotomously
scored task, there are four possible outcomes: both persons
succeed (v v); person A succeeds but B fails (vx); person A fails
but B succeeds (xv'); and both persons fail (xx}. Only two of these
outcomes {(v'x and xv) contain information about the relative
abilities of persons A and B.




If the probability of person A succeeding on the task is Py, and the
probability of person B succeeding is P, then the probabilities of
these four possible outcomes are given by the following joint
probabilities {(see note on page 22):

both persons succeed Pyrr = PaxPp
person A succeeds but B fails P, = Pax{(1-Pg)
person A fails but B succeeds P,, = (1-PA)xPp
both persons fail Pox = (1-Po)x (1-Pp)

The conditional probability of person A succeeding and B failing,
given that one person succeeds and the other fails, is:

Py | (Pyyg+ Pyy) =Pp x(1-Pg) / [Pp x (1-Pg) + (1-Pa) x Pp ]

And the conditional probability of person A failing and B
succeeding, given that one person succeeds and the other fails, is:

PXJ / (P/x + Px/) = (1“PA) X PB / [PA X (I-PB) -+ (1-PA) X PB]

From these two equations it follows that:

Pyx [ Pyy = exp(Ba-8) / exp(Bg-8) = exp(Ba-PBp)

In other words,

Ba-Bs=InP,y / Pys)

The implications of this feature of the Rasch model are shown in
the picture on the page opposite.

In this picture, the high-jumping abilities (5 =7 logits; f5=6 logits)
of two persons A and B are marked. The graph shows how the
Rasch probabilities of persons A and B both succeeding {vv'),
A failing and B succeeding (xv/), A succeeding and B failing (/x),
and both failing (xx) vary with task difficulty 3.

The important point in this picture is that the ratio of the width of
the lighter grey region (P,,) to the width of the darker grey region
(Py) is constant for all values of & (eg, .24/.09 = .36/.13 = .11/.04).

The significance of this feature of the Rasch model is that it is not
necessary to know or to estimate the height of the bar (difficulty
of the task) to estimate the relative abilities of persons A and B.
If these two persons were given multiple attempts at clearing the
bar at any particular height, an estimate of their relative abilities




could be obtained from the number of times A succeeded and B
failed (N,y) and the number of times A failed and B succeeded
(Ny.). All that is required is to calculate the proportions

Pux = Nyx/ (N x+Ny)
Pxv = Ny / (N x+Ny/)

and to substitute into:

b -bg =In (pyx/ pes) =In (N /Nyy)

Where b-bg is an estimate of the difference Ba- . In other words,
if a set of high-jumping data conform to the Rasch model, then the
difference (fa- Bp) between persons A and B can be estimated (in
logits) by setting the bar at any height and simply counting the
results vx and xv.




An lllustration

To illustrate this fundamental feature of the Rasch model, we now
consider the results of a hypothetical high-jumping exercise.

Suppose that, to estimate the relative high-jumping abilities of
persons A and B, we set the bar at three different heights (i, ii and
iii) and recorded the two jumpers’ results on each of 100 attempts

at each height:
Heightof { AandB | A clears B clears Aand B Total
bar both clear | B misses | Amisses | both miss | attempts
N4 X v Xx
iii (hard) 1 11 ' 84 100
it 14 37 100
i {easy) 64 3 100

Only the shaded part of this table contains information about the
relative abilities of persons A and B. We can now use the equation
at the bottom of page 21 to estimate the difference between the
high-jumping abilities of persons A and B:

ba-bg =In (Ny/x/Nys)




This difference could be estimated using the jumpers’ results on
each of the three heights separately:

based on attempts at height i
ba-by = In (24 / 9) = 0.98 logits
based on attempts at height ii
ba-by = In (36/13) = 1.02 logits
based on attempts at height iii

ba-bp=In(11/4) = 1.01 logits

Analysing Fit

Notice that, because the ‘results’ in the table on page 22 fit the
Rasch model extremely well, the three estimates are almost
identical. Attempts at heights i, ii and iii all lead to the conclusion
that person A’s high-jumping ability is about one logit greater than
person B's ability.

The comparison of these three estimates provides a simple test of
the fit of these data to the Rasch model. If, in a real high-jump
experiment of this kind, the three heights did not lead to similar
estimates of the difference between persons A and B, then that
would be evidence that the data did not conform to the model.

Objective Comparisons

Notice that, in the preceding example, we did not need to know
the heights i, ii and iii of the bar (in inches, centimetres or logits)
to estimate the relative abilities of persons A and B. When data
fit the Rasch model, it is possible to compare abilities without
knowing, or even having to estimate, the difficulties of the tasks.
This is a unique feature of the Rasch model.

To further illustrate the point that Rasch ability estimates are
independent of the difficulties of the tasks, notice that we could
have estimated the relative abilities of persons A and B from the
results of any 200 attempts:

iandii ba-bg = In ((11+36)/(4+13)) =In (47/17)
= 1.02 logits
iilandiii ba-bg =In{(36+24)/(13+9)) =In (60/22)
= 1.00 logits
iandiii  ba-bg =In{(11+24)/(4+9)) =1In (35/13)}
= 0.99 logits

or - the best estimate of all - from the results of all 300 attempts:

bp-bg = In ((114:36+24)/(4+13+9))
=1n (71 /26) = 1.00 logits




Because it is possible to simply sum down the middle columns of
the table on page 22 in this way, without regard to the difficulties
of the tasks, there is no reason to require persons A and B to make
more than one attempt at any given height. The two jumpers
could make one attempt each at, say, L different heights, with the
outcomes recorded in a table such as this:

Height AandB | Aclears | Bclears | AandB Total
number | both clear | B misses Amisses | bothmiss | attempts

4 X xv XX
1 0 " 0 1
2 0 0 1
3 1 4] 1
1
L 0 0 1

Once again, the relative abilities of persons A and B could be
estimated by summing down the middle columns of the table to
obtain N, and N, and then substituting into:

ba-bp = In (N/x/Ny,/)

If the performances of persons A and B were consistent with their
performances in the table on page 22, then the totals of the two
middle columns would have a ratio of about 2.7:1, leading to an
estimated difference of about 1.0 logits, regardless of the heights
they attempted.

In the above case, the fit of the data to the model might be tested
by comparing the estimate bu- bg based on attempts at the first
L/2 heights with the estimate based on attempts at the second
L /2 heights; or by comparing the estimate based on all the even-
numbered heights with the estimate based on all the odd-
numbered heights. These four estimates will be very similar when
the recorded observations fit the Rasch model.

Application to Test Data

The procedure just applied to high-jumping data also can be
applied to a set of test data. In a test, each respondent has only one
attempt at each item. If that attempt is recorded as either right ()
or wrong (x), then the test performances of two respondents A and
B on a test of length L could be summarised in a table as follows:

Item Aand B A right B right Aand B Total
number | both right | Bwrong | Awrong | bothwrong | attempts

Y X XV XX

- 5 oo — . . ;
2 0 0 1
3 1 0 1
1

L 0 0 1




Reading achievement

Low

Distrioution of estimated
student locations on a
reading achievement
variable

The relative abilities of persons A and B are estimated by summing
down the middle two columns of the table to obtain N/, and N,/
and then substituting into:

ba-bpg = In (N, / Ny}

The fit of these test dala to the Rasch model could be tested
by comparing estimates obtained on different subsets of items
(eg, even items, odd items; first half of test, second half of test).

Estimating Locations on a Variable

If all possible pairs of students taking a test are considered in this
way, and all these “pairwise’ estimates are brought together, then
it is possible to estimate the locations of all students taking the
test along the same variable. This procedure is known as the
‘pairwise’ method of estimating students’ abilities on a variable.!

The result of applying the pairwise estimation procedure to a set
of test data is an estimate of each student’s location on the variable
the test is designed to measure. The diagram on this page shows
a distribution of Year 3 students’ estimated locations on a variable
of increasing reading achievement. These estimated locations are
mapped on an interval-level scale marked out in logits.

In Summary

The Rasch model described in this article specifies the
requirements a set of test data must meet if they are to provide
measures which are: (i) estimates of individuals’ locations on a
single variable/dimension; (ii) expressed in a constant unit of
measurement; and (iii} freed of the particulars of the instrument
used to obtain them.

Measures with these properties do not come easily. Although they
can be constructed from responses to test items, not every set of
test items meets these requirements and is capable of yielding
unidimensional, interval-level, objective measures.

The key to objective measurement resides in the fact that, when
two persons A and B attempt an item, under the Rasch model, the
ratio P, / Py, is governed only by the relative abilities of the two
PerSODS:

Ba-PBe = In{P/x / Pyy)

(where P, is the modelled probability of person A succeeding and
B failing the item, and P,/ is the probability of A failing and B
succeeding). It is this feature of the model that makes possible
measures which are ‘freed’ of the particulars of the items used to
obtain them.

When the Rasch model is applied, it provides a measure for each
student on a continuum marked out in equal intervals called ‘logits’.

1 Choppin, B. (1976). Recent developments in item banking. In DN de Gruitjer & L] Vanderkamp {eds). Advances it
Psycholegical and Educational Measurement. London: Wiley.




mapping variables

A fundamental characteristic of ‘measures’ is that they indicate
positions on general variables. In other words, they have
meanings that are not limited to, and can be generalised beyond,
the specific instruments used to obtain them. For example,
measures of length in centimetres indicate positions on the general
variable ‘length’ and have meanings that do not depend on the
details of the instrument used (eg, wooden rule, steel tape
measutre, callipers, dressmakers’ tape).

Educational measures also are intended to indicate positions on
general variables. For example, measures of reading ability are
intended to indicate positions on the general variable ‘reading
ability” and to have meanings that are not limited to the particular
passages of text or particular test questions used to obtain them.
Test developers know that individual test questions are never of
significance in themselves: they are simply opportunities to collect
samples of behaviour for the purposes of estimating positions on
the general variable of interest.

When it comes to inferpreting educational measures, it is important
to look beyond the specifics of the instrument to the generalities of
the underlying measurement variable. It is to this topic that we
now turn.

Marking Out a Variable

In our discussion of the measurement of high-jumping ability we
noted that the difficulties of high-jumping tasks and the abilities of
individuals could be conceptualised as positions on the same
variable. In real high-jumping events, the difficulty of a task is
determined by the height of the bar from the ground. When the
bar is set at increasing heights, these increasingly difficult tasks
define increasing levels of high-jumping ability.

But an alternative to measuring the height of the bar from the
ground would be to estimate the difficulty of each high-jumping
task from records of jumpers’ success rates on that task. If a group
of jumpers attempted the same set of tasks, then the height cleared
by the greatest number in the group would be estimated to be the
easiest, and the height cleared by the smallest number would be
estimated to be the hardest. Using the measurement model on
page 18, the difficulty of each task could be estimated (in logits)
from the available records of jumpers’ performances.

This process of estimating the difficulties of a set of tasks is known
as “calibration’. To illustrate the calibration process itis convenient
to begin by considering one individual’s attempts at two high-
jumping tasks Y and Z with difficulties &y and 8z. If the person has
one attempt at each height, then there are four possible outcomes:
the person succeeds on both (vv); succeeds on Y but fails Z (vx);
succeeds on Z but fails Y (xv); and fails both (xx).

Only two of these four possible outcomes (v/x and xv)} are
useful in estimating the relative difficulties of the two tasks.




Following steps parallel to those outlined on page 20 - which
include calculating the conditional probability of the person
succeeding on each task, given that they succeed on one but fail
the other - the distance between tasks Y and Z on the variable is:

62 ~6y = In (P/xlpx/)

If this person attempts tasks Y and Z on a number of occasions,
and on each occasion a record is kept of whether the outcome is xx,
/%, X/ or vv, then the distance between tasks Y and Z can be
estimated as:

dz-dy = In(n/y/ny/)

where dz - dy is an estimate of 8z - &y, n, is the number of times
the person succeeds on Y but fails Z, and n,, is the number of
times the person succeeds on Z but fails Y.

The important observation here is that this estimate does
not depend on the person’s ability. The distance between tasks
Y and Z can be estimated by counting the outcomes vx and xv for
any person. And, when data conform to the model, the estimates
obtained in this way from the performances of different indi-
viduals are statistically equivalent.

From this observation it follows that, to estimate the distance
between tasks Y and Z, it is not necessary to ask individuals to
make more than one attempt at each task. For any group of
persons, all that is required is that a record be kept of the number
of vx and xv outcomes for the group. The distance can then be
estimated as:

dZ'dY = In (N/x/Nx/)

where N/, is the number of persons succeeding on Y but failing Z,
and N, is the number of persons succeeding on Z but failing Y.

This process can be repeated for all possible pairs of tasks, and the
estimated distances between tasks brought together to calibrate all
tasks along the same variable.

When this procedure is applied to records of students’
performances on a set of test items, an estimate (in logits) is
obtained of each item’s difficulty, allowing all items to be
calibrated along the variable on which students are measured.

The diagram on the next page shows two sets of items calibrated
along a variable of increasing reading achievement. The items
shown here were administered in two tests: a test for third grade
students and a test for fifth-grade students. The easiest item
{(numbered 3.1 on the Year 3 test) is at the bottom of the diagram;
the hardest (numbered 12 on the Year 5 test) is at the top. From
this diagram it is clear that the Year 5 test was generally more




difficult than the Year 3 test, although there are many items on
both tests in the range 300 to 400. (The numbers on the vertical
scale are multiple logits.}

600+

5004

Year 3

400+

3007

Reading achievement

200+

1007

Reading items calibrated along a variable of increasing
reading achievement

When a number of test items are calibrated along a variable in this
way, the locations of individual items provide insights into the
underlying variable. Each item is an example of the variable in
the region in which it is calibrated. For example, item 3.1 above
is a relatively easy reading item requiring a relatively low level
of reading ability. This item requires Year 3 children to loock at
the cover of an age-appropriate storybook and to identify
key elements of the story from the book title and illustration.
Children with very low reading abilities (below about 100 on this




scale) will probably not be able to complete tasks of this kind.
Item 3.1 is the only item on these two tests illustrating this level of
early reading development.

At the other extreme, the most difficult reading items on these two
tests are items 12, 23 and 27 on the Year 5 test. To answer these
items correctly students have to interpret the expression ‘last
but not least,, infer meaning from figurative language, and
demonstrate an understanding of the connection between the
content and form of a piece of text. These are examples of
relatively high levels of reading skill in the region of 600 on this
scale.

An analysis of what students have to do to provide the correct
answer to each item on these two tests provides the beginnings of
a ‘map’ of reading development across the third to fifth grades of
school. The reading achievement map on page 30 summarises the
skills assessed by most of the items on these two tests. A more
detailed version of this map would include examples of the test
itemns themselves to illustrate positions along the map. And a still
richer understanding would be obtained by adding other
calibrated items to this picture and investigating typical features
and demands of items at various locations along the continuum.

Analysing Stability

An important question when mapping variables in this way is
whether the locations of items along the variable are stable across
the students being measured. Individuals can be measured and
compared meaningfully on a variable only if the variable itself is
stable.

At the most elementary level we can ask whether the same
estimated difference dz-dy in the difficulties of two items Y and Z
is obtained from the responses of different groups of students (eg,
male, female, high-scoring, low-scoring, odd-numbered, even-
numbered students}). This test can be conducted by counting
the students in each group with Y right and Z wrong (N,,) and
the number of students with Y wrong and Z right (Ny,), and then
estimating the difference as:

dz-dy = In (Ny/Ny/)

When observations fit the Rasch model, this difference is the same
(statistically equivalent) for different student subgroups. More
generally, if an instrument is stable in its functioning across the
students with whom it is to be used, then for any given item pair
(1)), statistically equivalent estimates of the difference dj-d; will be
obtained from the responses of different subgroups of students.

The statistical analysis of the stability of item difficulties across
different student subgroups is known as ‘differential item
functioning’ (dif) analysis.

The graph on page 31 is a pictorial display of the results of a
dif analysis. This graph was constructed by calibrating the items
on a statewide primary-school reading test on male and female




Reading achievement

600—

500=+

400-

300

200~

100+

Recognises the connection between presentation style and nature
of information (eg, question-and-answer format for interview data).

Infers meaning from figurative language.

Interprets idiomatic language (eg, ‘last but not least’).

Recognises how linguistic features {eg, exclamation marks)
support ideas implicit in text.

Selects several pieces of information from a complex presentation of text.

Recognises probable context for a piece of writing,

Explains an author’s point of view.

Recognises the tone of a simple poem.

Orders detailed events from a narrative.

Recognises conventional linguistic features {(eg, pronunciation guides).
Interprets factual information.

Recognises the relationship between two pieces of text.

Generates research question to explore topic about which they have read.

Works out meaning of unknown word from context and picture clues.
Finds evidence to support a statement.

Orders instructions in a procedure.

Extracts information from complex presentation of text and pictures.
Infers missing step in a procedure.

Recognises main idea in paragraph of factual text.

Decides whether writing is fact or fiction based on described events.
Recognises text genre from book titles.

Makes connections between pieces of factual information in simple text.
Predicts a plausible ending for an illustrated story.

Recognises how elements of an illustration support text in a story.
Uses title and illustration to predict story setting.
Interprets picture to predict what happens next in illustrated story.

Uses book title and illustration to identify key elements of story.

Some indicators on a reading achievement map
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pupils separately and then plotting these two sets of difficulty
estimates against each other. The easiest item in this set (for both
males and females) is at bottom left; the hardest is at top right.
The unshaded band shows the region of statistical equivalence
under the model (95% confidence region).

Two iterns {arrowed) are located above the band. Relative to the
other items on this test, these two items are significantly more
difficult for females than for males. A question that might be
asked about these two items is whether their content places
females at a special disadvantage. A third item is just below the
band and, relative to the other items on this test, is more difficult
for boys than for girls.

When used routinely in test development, dif analyses provide
a basis for identifying items that may be biased against particular
groups of students. Only if items retain their relative difficulties
throughout the student population with which they are to be
used (ie, are ‘unbiased’) do they provide the stability required of
a measuring instrument.

{tem Banks

The map on page 30 shows reading items from two tests calibrated
on a continuum of increasing reading achievement. Other reading
items could be developed and calibrated along this continuum,
provided that responses to those items also fit the Rasch model. In
theory, there is no limit to the number of items that could be
calibrated along a variable, and the larger the number of calibrated
items, the richer the description and illustration of that variable.

A collection of calibrated test items is referred to here as an ‘item

item difficulty (logits)
FEMALES

ltem difficulty (logits)
MALES




bank’. Some writers use the term ‘item bank’ to refer to any
collection or pool of test questions. We follow the convention
proposed by Bruce Choppin of reserving the term ‘bank’ for a set
of items calibrated together on a commeon measurement variable.
Only if items have been calibrated together along a common
variable do they constitute a bank.

An item bank is constructed by jointly calibrating items from
different tests or by undertaking special ‘equating’ studies in
which students take items from more than one test. The items on
pages 28 and 30 were calibrated along the same variable using the
fact that some of the Year 3 items also were included in the Year 5
test. These common items provided the ‘link’ required for the joint
calibration of the two tests. In the calibration process, the total set
of Year 3 and Year 5 items was in effect treated as one large test in
which only some items {the common items) were taken by all
students.

Further items could be calibrated on this reading variable by
embedding some of the items on page 28 into new tests as they
were developed. The already calibrated bank items would pro-
vide the link required to bring new items on to the variable. (In
practice, this could be done by independently estimating the
difficulties of all items on a new test and then adjusting each of the
item difficulties by the amount required to make the average
difficulty of the common items the same as their average in the
bank.) This process is known as ‘common-item’ equating,

An alternative procedure for calibrating a large number of items
on the same variable is to ask groups of students to take more than
one test. A group of students taking two tests provides the link
required to calibrate those two tests on the same variable. In the
calibration process, the two tests are in effect treated as one large
test. This process is known as ‘common-person’ equating.

Common-person equating was used to equate the fourteen forms
of the TORCH Tests of Reading Comprehension. The easiest of these
tests (Form A) was designed for use with third-grade students; the
hardest (Form N), for use with tenth-grade students. The tests
were arranged in intended difficulty order, and all students in the
equating study were asked to attempt two tests of similar intended
difficulty. In the diagram below, each line joining two lests
represents a group of students attempting those two tests.




The linking of the fourteen Tests of Reading Comprehension in this
way allowed all TORCH items to be calibrated along a continuum
of increasing reading ability. Teachers using TORCH choose a
test appropriate to students’ current reading abilities. Because
all tests are calibrated along the same variable, performances on
one test can be compared directly with performances on any other
test, and reading growth can be monitored over time.

Item banks vary in size from several dozen items to many
thousands of items. Once a bank has been constructed, it can be
used as a source of calibrated items for the construction of new test
forms. Any combination of calibrated items selected from an item
bank is capable of providing student measures on the bank
variable. When students’ responses conform to the Rasch model,
these measures are directly comparable with measures based on
any other selection of bank items.

The advantages of an item bank include the fact that it is not
necessary to administer exactly the same test items to all students.
A set of relatively easy items can be selected and administered to
students with relatively low levels of achievement, a set of more
difficult items can be administered to more able students, and the
results on the two tests can be compared directly. Student
measures of this kind are ‘objective’ in the sense described on
pages 10 and 11 — their meaning does not depend on knowledge of
the particular items used to obtain them.

Computer Adaptive Testing

When items are drawn from a calibrated-item bank, and students’
responses conform to the Rasch model, it is possible to compare
directly the performances of students taking different selections of
test items. In a computer adaptive test, items are presented one at
a time on a screen. After a student has attempted an item, the
student’s ability (B} is re-estimated based on the student's
performance on that item and all preceding items. The bank is
then automatically searched for the item with the difficulty
estimate closest to the student’s new ability estimate. This item is
administered and the process continues. The test usually ends
when a specified level of confidence about a student’s ability
estimate is reached.

A computer adaptive test is tailored item-by-item to individual
test takers and so consists of items matched to the ability levels of
individual students. There is no reason why, in a computer
adaptive test, any two students should take any item in common.
And, because all items are calibrated and drawn from the same
item bank, students’ test results are directly comparable,
regardless of the items they have attempted. The advantage of a
computer adaptive test is that it contains few, if any, items that are
inappropriately easy or inappropriately difficult for individual
students.




in Summary

When items are calibrated along a variable, they begin to give
meaning to that variable. They indicate typical observations at
particular locations along the variable. When considered together,
calibrated test or questionnaire items provide insights into the
nature of typical progress or development. They form a ‘map’
against which student progress can be observed and monitored.
The larger the number of items calibrated along a variable, the
more richly the variable can be described and illustrated.

The key to the objective calibration of test or questionnaire items
resides in the fact that, under the Rasch model, when an individual
attempts two items Y and Z, the ratio P, / Py, is governed only
by the relative difficulties of the two items:

bz-8y = In (P y/Py)

(where P, is the modelled probability of the individual
succeeding on Y but failing Z, and P, is the probability of the
individual failing Y but succeeding on Z). When data conform to
the Rasch model, it is possible to estimate the relative difficulties
of any pair of items Y and Z from a simple record of student
performances on those two items, regardless of the students
involved.

In practice, it is essential that checks are made on the extent to
which observations conform to the model. Only if item difficulty
estimates are stable across the student population with which they
are to be used can all students in that population be measured and
compared on the same variable. Checks on differential item
functioning indicate the extent to which a variable maintains its
meaning across particular subgroups of the student population.

When a large number of items are calibrated on a variable, they
constitute an item ‘bank’. An advantage of an item bank is that it
allows items to be selected and combined into different tests and
students’ performances on these different tests to be compared
directly. A computer adaptive test draws on a bank of calibrated
items to construct tests tailored to the item-by-item performances
of individual test takers.

! Thurstone, LL (1928). Attitudes can be measured. American Journal of Sociolegy, 33,
529-554.




reporting measures

Educational measurement begins with the intention to estimate
students’ locations on some variable of interest. In education we
are interested in many different aspects of student development,
including reading ability, scientific literacy, respect for other
cultures, mathematical competence, love of learning, logical
reasoning, proficiency in the use of technology, and interperson-
al skills. Every attempt to measure is an attempt to establish
students’ current levels of attainment in some aspect of their
development.

Measuring instruments — tests and questionnaires — are designed
to provide observations that can be used to estimate levels
of attainment. But particular measuring instruments are never
important in themselves: every test item can be replaced by one of
many other equally appropriate items; every test can be replaced
by some alternative selection of items. In education we intend cur
measures to have a generality that extends beyond the specific set
of iterns used to obtain them. We are interested in a student’s
performance on a particular selection of items only to the extent
that it indicates the student’s standing on the underlying variable
that the test is designed to measure. This intention is common to
all measurement. For example, when we use a set of bathroom
scales, we expect the parficular bathroom scale we use to be
irrelevant to the result, and the measure of our weight to be
expressed in a metric that is not peculiar to that instrument.

If measures are to be compared meaningfully from one instrument
to another (eg, from one reading test to another), and if they are to
be used to measure change and to monitor growth, then they must
be reported on measurement scales that are not tied to any one
instrument,

Interpreting Measures

In educational measurement, our primary interest when
interpreting and reporting student attainment is usually in the
knowledge, skills, understandings, attitudes or values that
students have acquired. We also may be interested in comparing
students” levels of attainment with the attainments of other
students (eg, students of the same age or grade, students in
other States or countries) or in knowing what progress students
have made since some earlier occasion. But for many purposes —
and particularly for the purposes of instruction — our primary
interest is in knowing how students are progressing in relation
to some continuum of developing knowledge, skills, under-
standings, attitudes or values.

To interpret educational measures in this way, it is first necessary
to give substantive meaning to the variable being measured by
mapping the kinds of observations typically made at varying
locations along that variable. An example of such a mapping is
shown on page 37. The numbers on the left of page 37 indicate
increasing levels of reading ability as defined by the Lexile
Framework for Reading'. The literature titles are examples of




books at different levels of reading difficulty. The easiest book
shown here is Ronald Morgan Goes te Bat (200 lexiles); the most
difficult is Jonathan Livingston Seagull (990 lexiles). A student with
a reading level of, say, 880 should be able to read text at that level
(eg, The Red Pony) with 75 per cent comprehension. On the right of
the page are examples of texts af increasing levels along this
continuum.

The progress map on page 37 allows students’ reading abilities
{measured on the Lexile scale) to be interpreted in ferms of the
kinds of texts they are likely to be able to read and understand,
and suggests books that might be appropriate at particular levels
of reading ability. (The appropriateness of a book for a particular
student will depend, of course, not only on its difficulty level but
also on its content and level of interest for the child.)

Every measurement variable in education can be mapped and
illustrated with examples of the kinds of skills, responses or
behaviours that characterise levels of development along that
variable. Descriptions and illustrations attach substantive
meaning fo a variable and clarify the nature of growth in the area
being measured. Progress maps of this kind are sometimes called
‘described proficiency scales’, and the process of interpreting
students’ levels of attainment with reference to such maps,
‘standards referencing’.

In the construction of measurement variables it is common to
define broad levels of attainment and to describe and illustrate
typical observations within each level. The proficiency scale in
Civics on page 40 was constructed from an analysis of US
students’ performances in the National Assessment of Educational
Progress. The numerical scale on the left of the page is divided
into four broad levels, and the kinds of knowledge and
understanding typical of students at each level are described.’
As in the Lexile example, these described levels provide a frame of
reference for interpreting measures of attainment.

Performance Standards

As well as providing frames of reference for reporting and
describing students’ current levels of attainment and charting
progress over time, measurement variables of the kind illustrated
on pages 37 and 40 also can be used in setting expectations or
targets for student achievement. For example, the map on page 37
could be used to identify a level of reading ability that might
reasonably be expected of all students by the end of fourth grade.
The map of developing Civics knowledge on page 40 might be
useful in thinking about the level of Civics knowledge to be set as
a target for all eighth-grade students. Expectations or targets for
student achievement also are called “performance standards’.

A performance standard identifies the kinds of skills or
understandings expected of students and, operationally, takes the
form of a minimum score that must be achieved if a student is to
be considered to have met the standard {eg, 270 on the Lexile scale;
320 on the Civics scale). Minimum scores, also known as cut-
scores, are set through a ‘standard-setting’ process in which
judgements are made item-by-item about the likely performance
of a student who just satisfies the standard. For example, to set the




Literature Titles

Stuart Little

The Red Pony

A Tnste of Blackberries
Sounder

Mrs Frishy & Rats of NIMH
oy Appleseed

How fo Ent Fried Worms
Chocolate Fever

On the Banks of Plum Creek
Huardy Boys Submarine Caper
Jack aud Jill

Flossie and the Fox

Commander Tond

Curious George

Alligntor wnder my Bed
Sophie and Gussie
Something Queer Going On
Yonder

Zack's Alligator

Bingo, Best Dog in the World
One Fish Two Red Fish Blue
Freight Train

Frog and Toad All Year
Ronald Morgan Goes to Bat

Example Text

It was higher than a big scythe blade and a very pale favender above the
dark blue water. It raked back and as the fish swam just below the surface
the old man could see his huge bulk and the purple stripes that banded
him. His dorsal fin was down and his huge pectorals were spread wide.
On this circle the old man could see the fish’s eye and the two grey
sucking fish that swam around him. Sometimes they attached themselves
to him. Sometimes they darted off.

He did not know how the world is simplified for kings. To them, all men
are subjects. “Approach, so that I may see you better,” said the king, who
felt consumingly proud of being at last a king over somebody. The little
prince looked everywhere to find a place to sit down; but the whole planet
was crammed and obstructed by the king’s magnificent ermine robe.

So he remained standing upright, and since he was tired, he yawned. ‘It is
contrary to etiquette to yawn in the presence of a king,” the monarch said.

The following Saturday merning my mother drove me to the highway to
get the New York bus. It was my first time going alone and my mother was
nervous. “Listen, Margaret — don’t sit next to any men. Either sit alone or
pick out a nice lady. And try to sit up front. If the bus isn’t air-conditioned
open your window. And when you get there ask a lady to show you the
way downstairs. Grandma will meet you at the information desk.” ‘T know,
[ know.” We'd been over it three dozen times ...

In the great green room there was a telephone and a red balloon. And a
picture of the cow jumping over the moon, And there were three little bears
sitting on chairs. And two little kittens and a pair of mittens, And a little
toyhouse and a young mouse. And a comb and a brush and a bow!] full of
mush. And a quiet old lady who was whispering ‘hush’. Goodnight room.
Goodnight moon. Goodnight cow jumping over the moon. Geodnight Light
and red balloon. Geodnight bears. Goodnight chairs. Goodnight kittens.




pass score on a final-year Dentistry examination, experts in the
field might judge the likelihood of a minimally competent dentist
correctly answering each item on the examination.

When a performance standard is established, there is a special
interest in knowing not only where students stand on an
underlying continuum of achievement, but also where they stand
in relation to a defined point (cut-score) on that continuum. In
some contexts, such as final-year professional examinations, this
question may be of primary interest in the interpretation of test
results.

Reporting Growth

A measurement variable also provides a frame of reference for
monitoring and reporting growth over time. By measuring an
individual’s level of attainment on a variable on different occasions
it is possible to track that individual’s development over time, to
plot his or her growth trajectory, and to evaluate improvement
from one occasion to another. The interpretation of a student’s
current Jevel of attainment by reference to that student’s attainment
on some earlier occasions is sometimes called ‘ipsative’ referencing,

In longitudinal studies of student achievement, the same indi-
viduals are tracked over a number of years. It is common in these
studies to collect not only achievement measures, but also
information about students’ educational histories and experiences,
their home backgrounds and relevant out-of-school activities.
An attempt is then made to understand factors influencing
learning over a number of years of school. Longitudinal studies
depend on the possibility of making and comparing achievement
measures on the same variable/s over extended age ranges.

It is also possible to measure and compare the achievements
of a group of students on different occasions. When the progress
of a group is followed, questions can be asked about average or
typical rates of growth, The Third International Mathematics and
Science Study (TIMSS), for example, measured the mathematics
and science achievements of fourth-grade students in each
participating country and, four years later, measured the
achievements of eighth-grade students in those countries. In this
way it was possible to measure average or typical growth in
mathematics and science achievement over four years in each
country.

Comparing Attainments

Measures of student achievement also can be interpreted
by comparing them with the achievements of other students.
The process of comparing a student’s measure with the measures
of other students is known as ‘norm referencing’.

A measure is interpreted ‘normatively’ whenever it is compared
with the performances of others. The observations that a student
has achieved the highest test score in her class, has performed in
the top 10 per cent of students in the State, has a reading age of 6.2,
and is achieving at the 85th percentile for her age group nationally
are examples of norm-referenced interpretations of achievement.




If a student’s achievement is to be interpreted by comparing it
with the achievements of other students, then it is important to
clarify the nature of the comparison group. Is the comparison
group all 10-year-olds in the State/province? All 10-year-olds
in the country? All fifth-grade students in the State/province?
All fifth-graders in the country?

Some testing programs measure the achievements of all stud-
ents in an education system at identified grade levels. These
‘full-cohort’ or ‘population’ testing programs make it possible to
compare a student’s performance - or the average performance of
a class or school group — with the achievements of all students in
the same grade throughout the education system.

But measures are not always available for all students in a
comparison population, requiring inferences to be made about the
population from a carefully selected sample of students. The
drawing and testing of student samples is common practice
in international achievement studies such as the Programme
for International Student Assessment {PISA) and the Third
International Mathematics and Science Study (TIMSS), and in
national surveys of achievement such as the US National
Assessment of Educational Progress (NAEP). By measuring the
achievements of representative samples of students, these
programs provide information about the achievements of national
student cohorts. A State or school choosing to use test materials
from these programs is then able to compare individual or group
performances with national and international norms.

An example of a national survey of this kind was the Australian
National School English Literacy Survey which measured the lit-
eracy achievements of carefully drawn national samples of Year 3
and Year 5 students. The measured reading achievements of these
national sarples are shown on page 42. Each of the bars in this
graph corresponds to a score on the Year 3 or Year 5 reading test,
and the approximate percentage of students in each bar is shown.

The reading variable along which these students were measured
alsc appeared on page 30. By referring to page 30 it is possible to
interpret a student’s measured level of reading achievement in
terms of the kinds of reading behaviours he or she is likely to
display. By referring to page 42 it is possible to interpret that same
measure in terms of the reading achievements of Australian Year 3
and Year 5 students. For example, from page 30 it can be seen that
a student with a reading measure of 200 on this scale typically
would be able to use combinations of pictures and text to
demonstrate some understanding (eg, use a book title and cover
illustration to identify key elements of a story; interpret a picture
to predict what happens next in a story; use a title and illustration
to predict a story setting; recognise how elements of an illustration
support text in a story). From page 42 it can be seen that 89% of
Year 3 students and 97% of Year 5 students were performing above
this level.

Publishers of commercial tests usually provide test ‘morms’
allowing users to compare performances on a test with the
performances of students of the same age or grade. Test norms
show the percentage of students in a norming sample achieving
each score on the test.




Described levels of attainment in Civics (US National Assessment of Educational Progress)

Comparing Subgroups

When sufficiently large numbers of students are measured on
the same variable, it is possible to compare and report the
performances of student subgroups on that variable. The com-
parison of student subgroups is illustrated on page 43, where
Year 3 and Year 5 students in the Australian National School
English Literacy Survey have been grouped according to
socio-economic status based on parents” occupations. Five




socio-economic categories were constructed at each Year level;
the lowest (manual and unskilled labourers), middle, and
highest (professional and managerial) are shown here. The
box-and-whisker plots have been constructed to show the median,
middle 60 per cent, and middle 80 per cent of students in each
subgroup.

From the six box-and-whisker plots it can be seen that the
difference between the reading achievements of the lowest and
highest socio-economic groups is greater at Year 5 than at Year 3.
It also can be seen that, on average, Year 3 students in the highest
socio-economic group have higher reading levels than Year 5
students in the lowest group. It is common in statewide
assessment programs and national and international surveys to
identify student subgroups and to compare and report the
achievements of these subgroups.

Monitoring Trends Over Time

The construction and maintenance of measurement variables is
essential to attempts to monitor trends in educational achievement
over time. Because it usually is not desirable to administer the
same test to the same students on different occasions, or even
to administer the same test to different cohorts of students year
after year, attempts to monitor trends over time depend on the
calibration of different tests along a commen variable.

One major national effort to monitor trends in educational
achievement over time has been the US National Assessment of
Educational Progress (NAEP). Selected results from NAEP
Reading are shown on page 44. Average reading achievements of
national samples of white, black and Hispanic 9, 13 and 17-year-
old students are shown here over the period 1971 to 1996. All
reading tests over this 25-year period were calibrated on the same
reading variable, enabling the reading levels of 9, 13 and 17-year-
olds to be compared, and 25-year trends in reading achievement to
be graphed and analysed.

From the graph on page 44 it can be seen that white students
performed at significantly higher levels of reading achievement
than black and Hispanic students throughout the 25-year period at
all three ages. However, while there was no significant change in
the reading levels of white students over this period, the average
reading levels of black and Hispanic students increased
significantly from 1971 to 1996. This was true at all three ages.
Still closer inspection shows that, while there were improvements
in the reading achievements of black and Hispanic students
between 1971 and the late 1980s, there appears to have been no
further improvement in the average achievement of these students
during the 1990s.

Many large-scale assessment programs, including a number of
national and international surveys, provide education policy
makers and administrators with information about trends in
educational achievement. A prerequisite for the study of trends is
a carefully constructed measurement variable along which growth
and decline can be charted.
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In Summary

Educational measurement is a process of estimating students’
locations on some variable of interest. Once measures of an
educational variable have been made, a variety of questions can be
asked about any student’s measure:

What kinds of knowledge, skills, understandings, attitudes or values does
the measure indicate? In other words, where does the student stand
on the variable of interest and what can be concluded about
the student’s current level of attainment? This question can be
answered by referring to typical observations at varying locations
along the variable (ie, the kinds of tasks the student is likely to be
able to complete; the kinds of responses they are likely to give).




Is the student performing at the level expected of students of his age or
grade? In other words, where does the student stand in relation
to a pre-specified performance standard? This question can be an-
swered by referring the student’s measure to the expected or
target level of attainment for the age/grade and deciding whether
it is significantly above or below that level.

What progress has the student made since the last assessment? In other
words, what growth has occurred? This question can be answered
by measuring a student’s achievement on a number of occasions
and monitoring improvement over time.

How does the student’s attainment conpare with the attainments of other
students of the same age or grade? In other words, how does it
compare with age or grade norms? This question can be answered
by referring the student’s measure to the distribution of measures
for the norm (reference) group.

Similar questions can be asked about entire groups of students.
For example: What kinds of texts can be read and understood by
the average six-year-old? What percentage of Year 5 students met
the expected performance standard? What are typical rates of fine
psychomotor skill development in 3-year-olds? How do national
mathematics achievements compare with international bench-
marks?

Answers to questions of this kind are essential to informed
decision-making in education and depend on the availability of
reliable measures on carefully constructed variables.

1 Stenner, | (1996) Mensuring rending comprehension with the lexile framework. Paper presented at the Fourth North American
Conference on Adolescent/ Adult Literacy. Washington.

2 Anderson, L, Jenkins, LB, Leming, ], MacDonald, WB, Mullis, IVS, Turner, M] & Wooster, ]S (1990). The Civics Report Card:
Trends in Achievement from 1976 to 1988 at Ages 13 and 17, Princeton: Education Testing Service.
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