Introducing the Fifth Edition of the

New!

Stanford Binet Intelligence Scales

©2003 The Riverside Publishing Company
Gale H. Roid, Ph.D.

Dr. Roid is Lloyd Dunn Professor of Educational and Psychological Assessment, Peabody College of Vanderbilt University, Nashville, Tennessee.

He is author or co-author of six published tests including the *SB5* and the *Leiter International Performance Scale—Revised*.

Harvard University, BA
University of Oregon, MA, Ph.D.
Fellow, APA, Division 5
Diplomate, American Board of Assessment Psychology
Overview
The SB5 is an individually administered assessment of intelligence and cognitive abilities.
A Continued Tradition of Excellence...

1905 Binet and Simon versions in France
1916 *Stanford Revision of the Binet-Simon Scale*—Lewis M. Terman
1937 *Stanford-Binet, 2e, Forms L and M*—Lewis M. Terman, Maud A. Merrill
1960 *Stanford-Binet, 3e, Form L-M*—Lewis M. Terman, Maud A. Merrill
1972 *Stanford-Binet, Form L-M (renorming)*—Lewis M. Terman, Maud A. Merrill, Robert L. Thorndike
1986 *Stanford-Binet Intelligence Scale, 4e*—Robert L. Thorndike, Elizabeth P. Hagen, Jerome M. Sattler
2003! *Stanford-Binet Intelligence Scales, 5e*—Gale H. Roid

©2003 The Riverside Publishing Company
Age Range

The *SB5* is appropriate for a broad age range of 2 to 85+ years—providing one comprehensive assessment for all ages.
New Features of the *SB5*

- Broad age range of 2 to 85+ years
- Visual-Spatial Processing—5th factor
- Nonverbal (low verbal) Scale
- Change-Sensitive Scores
- Abbreviated IQ
- Extensive low- and high-end items
- Enhanced child-friendly manipulatives
Comprehensive Coverage of Five Factors

- Fluid Reasoning
- Knowledge
- Quantitative Reasoning
- Visual-Spatial Processing
- Working Memory
All Five Factors Measured in Verbal and Nonverbal Domains

Factors

- Fluid Reasoning
- Knowledge
- Quantitative Reasoning
- Visual-Spatial Processing
- Working Memory

Domains

- Nonverbal
- Verbal
Improved Floor and Ceiling

• Extensive low-end items for better measurement of low-functioning children and adults.

• Extensive high-end items ensure measurement of the highest levels of gifted performance.
Improved Design for Assessing Preschoolers

Toys, manipulatives, and colorful artwork make the *SB5* child friendly.

Format engages the child by alternating activities.
Improved Design for Assessing Adults

Extended age range and enhanced measurement of memory increases usability with:

• Adults
• Elderly populations
• Individuals with neuropsychological difficulties
Assessing Individuals with Limited Language

Nonverbal Scale is useful for individuals whose ability may be underestimated by verbal tasks alone.

- English language learners
- Deaf, hearing impaired
- Language impaired
- Individuals with autism, head injuries, aphasia, or stroke
Assessing Individuals with Limited Language

Provides comprehensive assessment of intelligence using tasks with low language demands (Nonverbal IQ).

- Examiner uses brief, spoken directions
- Examinee responds nonverbally
Assessing Special Groups

- Learning disabled
- Individuals with Mental Retardation
- Developmentally delayed
- Gifted
- English language learners
- Attention Deficit/Hyperactive Disorder
- Autistic/Asperger’s Syndrome
- Speech and language delayed
- Alzheimer’s/dementia
- Traumatic brain injury
Additional Features

- Provides an opportunity to document test-taking behaviors
- Provides a comparison of verbal and nonverbal performance
- Easy to score by hand or with the optional *SB5 Scoring Pro™* scoring and reporting program
Continues Tradition

Blends important features of earlier editions of the Stanford-Binet with improvements in the psychometric design.

• Measures multiple factors in addition to hierarchical “g”

• Uses modern item-response theory to provide strong psychometric foundation

• Retains concept of Routing subtests using a point-scale format from SB IV

• Incorporates functional level design from SB L-M on non-routing subtests

©2003 The Riverside Publishing Company
Comparing *SB5* and *SB IV*

<table>
<thead>
<tr>
<th>SB5 (2003)</th>
<th>SB IV (1986)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Age: 2–85+ years</td>
<td>• Age: 2–23 years</td>
</tr>
<tr>
<td>• Measure of “g”</td>
<td>• Measure of “g”</td>
</tr>
<tr>
<td>• 2 routing tests</td>
<td>• 1 routing test</td>
</tr>
<tr>
<td>• Vocabulary</td>
<td>• Vocabulary</td>
</tr>
<tr>
<td>• Object Series/ Matrices</td>
<td>• Verbal Reasoning</td>
</tr>
<tr>
<td>• 5 factors</td>
<td>• Quantitative Reasoning</td>
</tr>
<tr>
<td>• Fluid Reasoning</td>
<td>• Abstract/ Visual Reasoning</td>
</tr>
<tr>
<td>• Knowledge</td>
<td>• Short-Term Memory</td>
</tr>
<tr>
<td>• Quantitative Reasoning</td>
<td>• Verbal/ Abstract & Visual Reasoning</td>
</tr>
<tr>
<td>• Visual-Spatial Processing</td>
<td>• Verbal/ Nonverbal</td>
</tr>
<tr>
<td>• Working Memory</td>
<td>• M = 100, SD = 15</td>
</tr>
<tr>
<td>• Verbal/ Nonverbal</td>
<td>• M = 100, SD = 16</td>
</tr>
</tbody>
</table>

©2003 The Riverside Publishing Company
Comparing SB5 and SB IV

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Routing subtests use point-scale format</td>
<td>• All tests use point-scale format (one item type across ages)</td>
</tr>
<tr>
<td>• All other subtests use functional level format (mixture of item types at different ages)</td>
<td></td>
</tr>
<tr>
<td>• Includes new activities—Object Series, Procedural Knowledge, Form Patterns, Block Span, Verbal Analogies, Position and Direction, Early Reasoning, and Last Word</td>
<td>• Includes Bead Memory, Memory for Objects, Number Series, Quantitative, and Matrices, Equation Building, and Pattern Analysis</td>
</tr>
</tbody>
</table>

©2003 The Riverside Publishing Company
Comparing *SB5* and *SB L-M*

SB5 (2003)	**SB L-M** (1972)
- Age: 2–85+ years | - Age: 2–18 years
- Measure of “*g*” | - Measure of “*g*”
- 2 Routing tests | - 1 (unofficial) Routing test
- Point-scale and age scale formats used | - Age scale format
- Multiple scores | - 1 score
 - 4 IQ scores
 - 5 factor scores
 - 10 subtest scores
 - Change-sensitive scores | - Verbal
- Verbal/ Nonverbal | - M = 100, *SD* = 16
- M = 100, *SD* = 15

©2003 The Riverside Publishing Company
Functional Levels

• Used in the following editions of the Stanford-Binet: Forms L, M, and L-M
• Return to age/developmental scale was requested by examiners and recommended by experts
• Simulated using the SB IV data
 • Reliabilities were similar between heterogeneous item sets and SB IV subtests
• Research on the “testlet” used in computer-adaptive testing provided further technical support for functional levels

©2003 The Riverside Publishing Company
Functional Levels
Approach to Assessment

- Recognized as multi-stage, tailored testing
- Enriches factor measurement within shorter, more efficient test administration
- Often associated with chronological age
 - Varies significantly in individuals with exceptionalities
 - Estimated starting level used vs. age level
Scores

- 4 Intelligence Score Composites and 5 Factor Indexes
 - Mean = 100, $SD = 15$
- 10 Subtest Scores
 - Mean = 10, $SD = 3$
- Percentile Ranks
- Change-Sensitive Scores (CSS)
- Age Equivalents
Organization and Content
General Intellectual Ability – g

Fluid Reasoning
Quantitative Reasoning
Crystallized Knowledge
Short-Term Memory
Visual Processing

Reading & Writing Ability
Auditory Processing
Long-Term Retrieval
Processing Speed
Decision Speed & Reaction Time

©2003 The Riverside Publishing Company
Fluid Reasoning

Ability to solve verbal and nonverbal problems using inductive or deductive reasoning.

Subtest Activities

Nonverbal
- Object Series/ Matrices

Verbal
- Early Reasoning
- Verbal Absurdities
- Verbal Analogies

©2003 The Riverside Publishing Company
Knowledge

Accumulated store of general information acquired at home, school, work, or “in life.” Often referred to as crystallized ability.

Subtest Activities

Nonverbal

NEW Procedural Knowledge

NEW Picture Absurdities

Verbal

Vocabulary
Quantitative Reasoning

Facility with numbers and numerical problem solving, whether with word problems or with figural relationships. Emphasizes problem-solving process more than academic mathematical knowledge.

Subtest Activities

Nonverbal
- Nonverbal Quantitative Reasoning

Verbal
- Verbal Quantitative Reasoning
Visual-Spatial Processing

Ability to see patterns, relationships, spatial orientation, or the “gestalt” among diverse pieces of a visual display.

Subtest Activities

Nonverbal

Form Board

NEW Form Patterns

Verbal

Position and Direction
Working Memory

Short-term processing of information whether verbal or visual, emphasizing “transformations” or “sorting out” of diverse information.

Subtest Activities

Nonverbal
- Delayed Response
- Block Span

Verbal
- Memory for Sentences
- Last Word

©2003 The Riverside Publishing Company
Technical Qualities
Fairness

• Quantitative analyses performed to ensure items had no bias across groups
• Qualitative bias review performed by experts

<table>
<thead>
<tr>
<th>Gender</th>
<th>Religion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td>Region</td>
</tr>
<tr>
<td>Culture</td>
<td>Socio-economic status</td>
</tr>
</tbody>
</table>
Reliability

Internal Consistency

<table>
<thead>
<tr>
<th>Component</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSIQ, NVIQ, VIQ</td>
<td>.95 to .98</td>
</tr>
<tr>
<td>5 Factor Indexes</td>
<td>.90 to .92</td>
</tr>
<tr>
<td>10 Subtests</td>
<td>.84 to .89</td>
</tr>
</tbody>
</table>

Split-half reliability

Note: Mean reliabilities across ages
Reliability

Test-Retest

• *SB5* measures abilities that are relatively stable across time

• Retest scores may show some increase due to practice effects and familiarity of testing procedures

• Overall, IQ scores on the *SB5* appear to be quite stable and less affected by practice effects

• Retesting may be possible after 6 months vs. the typical 12 month interval
Reliability

Inter-Scorer Agreement

• How two or more examiners score the responses on multiple-point items of the same examinee

• Items with poor inter-scorer agreement were deleted from the final edition

• Median inter-scorer correlation is .90
Content Validity

• Professional judgment of content
 • researchers, experts, examiners reviewed content
 • item bank of all *SB5* items

• Coverage of important constructs
 • items reviewed and rated by experts in CHC theory
 • design and test specification developed

• Empirical item analyses
 • classical and item-response methods employed
 • item discrimination, percentage correct at successive age levels, model-data-fit statistics, and differential item functioning analyses

©2003 The Riverside Publishing Company
Validity Data

Criterion-related validity data obtained with the following:

- SB IV
- SB L-M
- WJ III ®
- Bender®-Gestalt II
- WPPSI-R ®
- WAIS® -III
- WIAT® -II
- WISC-III ®

WAIS-III, WIAT-II, WISC-III, and WPPSI-R are registered trademarks of The Psychological Corporation ®.
Concurrent Validity

Full Scale IQ

<table>
<thead>
<tr>
<th>Assessment</th>
<th>SB5 FSIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB IV</td>
<td>.90</td>
</tr>
<tr>
<td>SB L-M</td>
<td>.85</td>
</tr>
<tr>
<td>WPPSI-R</td>
<td>.83</td>
</tr>
<tr>
<td>WISC-III</td>
<td>.84</td>
</tr>
<tr>
<td>WAIS-III</td>
<td>.82</td>
</tr>
<tr>
<td>WJ III Tests of Cognitive Abilities</td>
<td>.78</td>
</tr>
</tbody>
</table>
Concurrent Validity

Abbreviated IQ

<table>
<thead>
<tr>
<th>Assessment</th>
<th>SB5 ABI Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB5 Full Scale, Ages 2–5</td>
<td>.81</td>
</tr>
<tr>
<td>SB5 Full Scale, Ages 6 and above</td>
<td>.87</td>
</tr>
<tr>
<td>SB IV, Composite SAS</td>
<td>.71</td>
</tr>
<tr>
<td>WISC-III</td>
<td>.69</td>
</tr>
<tr>
<td>WAIS-III</td>
<td>.81</td>
</tr>
</tbody>
</table>
Predictive Validity Evidence

IQ/Achievement

<table>
<thead>
<tr>
<th>WJ III Tests of Achievement</th>
<th>SB5 IQ Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSIQ</td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td>.84</td>
</tr>
<tr>
<td>Broad Math</td>
<td>.76</td>
</tr>
<tr>
<td>Math Reasoning</td>
<td>.80</td>
</tr>
<tr>
<td>Written Expression</td>
<td>.70</td>
</tr>
<tr>
<td>Academic Applications</td>
<td>.84</td>
</tr>
</tbody>
</table>
Predictive Validity Evidence

IQ/Achievement

<table>
<thead>
<tr>
<th>WIAT-II</th>
<th>SB5 IQ Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSIQ</td>
</tr>
<tr>
<td>Math</td>
<td>.79</td>
</tr>
<tr>
<td>Oral Language</td>
<td>.77</td>
</tr>
<tr>
<td>Reading</td>
<td>.67</td>
</tr>
<tr>
<td>Writing</td>
<td>.53</td>
</tr>
<tr>
<td>Total</td>
<td>.80</td>
</tr>
</tbody>
</table>
Test Results
Steps for Hand-Scoring

1. Verify chronological age.

2. Check all raw scores for accuracy and transfer them to page 1 of Record Form.

3. Sum the raw scores and convert raw scores to scaled scores (*use Appendix A*).

4. Sum the scaled scores and convert sums of scaled scores into standard scores (*use Appendix B*).

5. Complete Profile Graphs.

6. Optional: obtain supplemental scores.
All except Special scores are recorded on page one of Record Form.
Transfer raw scores to page 1 of Record Form.

The maximum raw scores possible appear in light print.

Enter examinee’s actual raw score in each box over the shaded numbers.

Sum raw scores and convert to scaled scores (*Appendix A*).

Sum scaled scores.
IQ and Factor Scores

Convert sums of scaled scores to standard scores (Appendix B).

Choose level of confidence: 90% or 95%

Example is for a 4-year old male.

Standard Scores
Mean = 100
SD = 15
Profile Subtest Scaled Scores

Enter subtest Scaled Scores.

Plot each score to create a graphic profile of performance.

<table>
<thead>
<tr>
<th>Nonverbal (NV)</th>
<th>Verbal (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>KN</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

©2003 The Riverside Publishing Company
Profile Composite Standard Scores

Enter the Standard Score for each composite.

Plot each standard score to create a graphic profile of performance.

Do not connect Full Scale and Fluid Reasoning.
Supplemental Scores
Page 2 of Record Form

Use Appendix B
Table B.9, Page 255

Use Appendix C
Pages 258-270
Abbreviated Battery IQ

- Useful for screenings, re-evaluations, or as part of a comprehensive evaluation
- Enter the scaled scores from the 2 Routing Tests and add them together
- Consult Appendix B, Table B.9 to obtain SS, PR, confidence interval for the ABIQ

Calculation of Abbreviated Battery IQ

For the Abbreviated Battery IQ (ABIQ) to the right, enter the scaled scores for Nonverbal FR and Verbal KN from the previous page. Sum the two scores and use the ABIQ table in Appendix B to determine the standard score, percentile rank, and confidence interval.

![Table showing ABIQ calculation]

©2003 The Riverside Publishing Company
Change Sensitive Scores (CSS)

- Optional scoring method
- Useful when evaluating extreme performance levels (high or low) or documenting growth
- Consult Appendix C to obtain the CSS, standard error, and age equivalent for composites

Calculation of Change-Sensitive Scores and Age Equivalents

To calculate the change-sensitive scores (CSS), first record the raw scores from the previous page for the appropriate subtests. Then sum the column scores for each factor and the row scores for each IQ. Locate the appropriate tables in Appendix C to determine each change-sensitive score, SE, and corresponding age equivalent.
Change Sensitive Scores (CSS)

- Derived from an equal interval scale reflecting both item difficulty and person’s ability
- Uses a centering constant of 500, aligned to an age equivalent of 10-0
- Average increment of change is 430 to 520 (2 year-old to adult age range)
- Allows for more precise measurement
- Adapts testing to person’s ability
- Used for all item calibrations in SB5
 - permits items to be in order of difficulty
 - prevents overlapping of item difficulty from level to level
Interpretation of Scores
7-Step Interpretation Method

1. Assumptions
2. Purpose and Context
3. Nonverbal vs. Verbal
4. Full Scale IQ
5. Factor Indexes
6. Comparison of Nonverbal and Verbal Subtests
7. Qualitative Interpretation
Steps 1 and 2

1. Is the assumption of standard administration correct?
 A. Were any test procedures changed?
 B. Was the protocol scored correctly?

2. Consider the purpose of the testing and its cultural and linguistic context.
 A. What was examiner’s purpose for testing?
 B. Is the test appropriate for the examinee? (cultural and linguistic issues)
Step 3

3. Consider whether Nonverbal and Verbal IQ provide equally good indicators of the true level of functioning.

A. If approximately the same, then the Full Scale can be used as representative of the examinee’s general cognitive ability level.

B. If significant differences exist, and are infrequent (less than 15% of population), be cautious about using the Full Scale IQ.

C. If significant differences exist, consider all relevant variables to determine which score better represents the true level of functioning.
Example of Step 3

<table>
<thead>
<tr>
<th>Age: 10-1, female</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIQ 93</td>
</tr>
<tr>
<td>VIQ 103</td>
</tr>
<tr>
<td>FSIQ 98</td>
</tr>
</tbody>
</table>

1. Difference between NV and V is 10 points.

2. Minimum difference needed for statistical significance at .05 level for her age is 9.7 points. Her difference is statistically significant (see TM, p. 168, Table B.1).

3. However, her difference is not uncommon 27-32% of the population had a score difference of 9 to 10 points (see TM, p. 169–170, Table B.2).
Case Study for Step 3

CASE # ELL 05
Age: 16-10, female
NVIQ 78
VIQ 97
FSIQ 87

Lori is native of Pakistan
Native language is Urdu

Immigrated to U.S. two years ago
Parents college educated in Pakistan
Spoke English, but in ELL program
<table>
<thead>
<tr>
<th>NVIQ</th>
<th>VIQ</th>
<th>FSIQ</th>
<th>FR</th>
<th>KN</th>
<th>QR</th>
<th>VS</th>
<th>WM</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>90</td>
<td>87</td>
<td>93</td>
<td>100</td>
<td>97</td>
<td>94</td>
<td>91</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2003 The Riverside Publishing Company
Step 4

4. Can Full Scale IQ provide the best indicator of the overall level of functioning?

A. Possibly if NVIQ and VIQ are not significantly and practically different.
B. The FSIQ is the most reliable score.
C. The FSIQ has strong predictive promise.
D. Caution is still needed:
 • Although comprehensive, the SB5 does not measure all aspects of intelligence.
 • Intellectual functioning may be influenced by a variety of factors.
Steps 5 and 6

5. Consider the profile of the factor indexes.
 A. Factors are based on extensive research (CHC Theory) providing strong construct validity evidence
 B. Can be used to verify strengths and weaknesses in an individual profile
 C. Can be useful in cross-battery assessment

6. Consider the nonverbal and verbal subtests.
 A. Contrast verbal and nonverbal performance within each factor (task demands)
 B. Determine preferences and relative strengths or weaknesses
Example of Step 5

Age: 10-1, female
FR 112
KN 97
QR 111
VS 94
WM 77

1. Working Memory was statistically and practically lower than all the other factor index scores except Visual-Spatial Processing.

2. All differences except VS/WM are unusual (see TM, p. 169-170, Table B.2)
 - FR and WM (< 2% of population)
 - KN and WM (13% of population)
 - QR and WM (< 1% of population)
 - VS and WM (< 18% of population)
CASE # LD 07
Age: 7-0, male
FR 100 KN 97
QR 94 VS 91
WM 74

Documented Learning Disability
Identified by school’s regression discrepancy formula

Research shows that WM is key predictor of Learning Disabilities
Example of Step 6

Age: 10-1, female

<table>
<thead>
<tr>
<th></th>
<th>NV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>KN</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>QR</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>VS</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>WM</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

1. All Verbal subtests are lower than Nonverbal subtests except for Fluid Reasoning.

2. Her average of all subtest scaled scores is 9.7.

3. Verbal Working Memory is statistically and practically lower than her average (TM, p. 171, Table B.3).

4. Her weakness in Working Memory provides evidence for problems in her memory processes.
CASE # ELL 05
Age: 16-10, female
NVFR 12 NVKN 8
NVQR 11 NVVS 7
NVWM 10
VFR 5 VKN 3 VQR 8
VVS 6 VWM 11

NV Subtests: Higher than V except WM
WHY IS VWM HIGHER?

Interesting “W” pattern (KN and VS low)
WHY IS VKN SO LOW?
<table>
<thead>
<tr>
<th>Subtest Profile-Scaled Scores</th>
<th>Nonverbal (NV)</th>
<th>Verbal (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FR</td>
<td>KN</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

©2003 The Riverside Publishing Company
<table>
<thead>
<tr>
<th>Subtest Profile Scaled Scores</th>
<th>Nonverbal (NV)</th>
<th>Verbal (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>KN</td>
<td>QR</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CASE # ADHD 03
Age: 12-0, male
NVFR 13 NVKN 16
NVQR 16 NVVS 18
NVWM 11
VFR 14 VKN 16 VQR 16
VVS 11 VWM 13

DSM-4 criteria for Combined-type ADHD

Lowest NV Subtest NVWM (11)
Lowest V Subtests: VVS (11) and VWM (13)
SCATTER INDEX: 9 points
Step 7

7. Consider **qualitative interpretation including testing-of-limits.**

A. Consult Table 5.2 in Examiner’s Manual (p. 144–145) for suggested areas of qualitative interpretation

B. Analyze responses, task demands, errors, and observations made during testing

C. Complete the Test Session Behavioral Observations checklist in the Record Form

D. Complete standardized testing before testing-of-limits so the test results are not invalidated

E. Consider Change-Sensitive Scores
SB5 Scoring Pro

Using the *SB5 Scoring Pro*, you can:

- Add, edit, and search records of individuals
- Look up and display standard score, percentile ranks, and confidence intervals and calculate and display indexes and profiles
- Record test session observations and narratives
- Produce customized reports
SB5 Scoring Pro

Individual Data
Enter new individual and test information
SB5 Scoring Pro

Enter Scores

• Guided Entry
 – Provides step-by-step prompts for entering scores
 – Use if new to the scoring process or want extra help

• Quick Entry
 – Allows for quick entry of scores manually on the electronic record form
 – Use if familiar with the scoring process

• Raw Score Totals Only
 – Allows for entry of raw score totals
SB5 Scoring Pro

Example of Enter Scores Screen
SB5 Scoring Pro

Individual Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>2029</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Name</td>
<td>Kayla</td>
</tr>
<tr>
<td>First Name</td>
<td>ID</td>
</tr>
<tr>
<td>Test Date</td>
<td>1/6/2003</td>
</tr>
<tr>
<td>Age</td>
<td>10 years 0 months</td>
</tr>
</tbody>
</table>

Composite Scores

<table>
<thead>
<tr>
<th></th>
<th>Sum of Scaled Scores</th>
<th>Standard Score</th>
<th>Percentile Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonverbal IQ</td>
<td>58</td>
<td>110</td>
<td>75</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>47</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>Full Scale IQ</td>
<td>105</td>
<td>103</td>
<td>58</td>
</tr>
</tbody>
</table>

Factor Index Scores

<table>
<thead>
<tr>
<th>Factor Index Scores</th>
<th>Sum of Scaled Scores</th>
<th>Standard Score</th>
<th>Percentile Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Reasoning</td>
<td>22</td>
<td>106</td>
<td>88</td>
</tr>
<tr>
<td>Knowledge</td>
<td>22</td>
<td>106</td>
<td>88</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>21</td>
<td>103</td>
<td>58</td>
</tr>
<tr>
<td>Visual-Spatial Processing</td>
<td>26</td>
<td>117</td>
<td>87</td>
</tr>
<tr>
<td>Working Memory</td>
<td>14</td>
<td>83</td>
<td>13</td>
</tr>
</tbody>
</table>

Sum of Scaled and Standard Scores, Percentile Rank, and Confidence Intervals

- **Select Confidence Interval**: 95%
 - Confidence interval %: 118 to 102 to 107
- Fluid Reasoning: 113
- Knowledge: 114
- Quantitative Reasoning: 111
- Visual-Spatial Processing: 124
- Working Memory: 93

©2003 The Riverside Publishing Company
SB5 Scoring Pro

Sample Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Last Name</th>
<th>2629</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kayla</td>
<td>First Name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviated Battery IQ

<table>
<thead>
<tr>
<th>NV FR Scaled Score</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>V KN Scaled Score</td>
<td>11</td>
</tr>
<tr>
<td>ABIQ Sum of Scaled Scores</td>
<td>23</td>
</tr>
</tbody>
</table>

| Confidence Interval % | 95 |

Standard Score | Percentile Rank | Confidence Interval

| ABIQ | 109 | 73 | 100 to 116 |

Change-Sensitive Scores

<table>
<thead>
<tr>
<th>NV Raw Score Total</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Raw Score Total</td>
<td>16</td>
</tr>
<tr>
<td>Factor Raw Score Total</td>
<td>43</td>
</tr>
<tr>
<td>Change-Sensitive Score</td>
<td>505</td>
</tr>
</tbody>
</table>

| Standard Error | 4 |
| Age Equivalent | 12-8 |

V Raw Score Total	36
Factor Raw Score Total	60
Change-Sensitive Score	505

| Standard Error | 3 |
| Age Equivalent | 13-7 |

Change-Sensitive Scores for the Abbreviated Battery (ABIQ)

<table>
<thead>
<tr>
<th>NV FR Raw Score Total</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>V KN Raw Score Total</td>
<td>36</td>
</tr>
<tr>
<td>AB Raw Score Total</td>
<td>80</td>
</tr>
</tbody>
</table>

| Change-Sensitive Score | 505 |

| Standard Error | 3 |
| Age Equivalent | 13-7 |

©2003 The Riverside Publishing Company
SB5 Scoring Pro
Interpretive Worksheet
Replicates Record Form scores, profiles, special scores, and test observations
SB5 Scoring Pro

Score Summary Report

Select from:

• IQ and Factor Index Scores

• Subtest Scores

• IQ/ Factor Index Score Difference

• Subtest/ Profile Comparisons

• Subtest Score Differences

• Scatter Indices

• Change Sensitive Scores

Stanford-Binet Intelligence Scales, Fifth Edition Score Summary Report

Confidential Report for
Kayla H. Sample

Examinee: Kayla H. Sample
Date of Birth: 1/6/1993
Date of Testing: 1/6/2003
Age: 10 years 0 months
Sex: Female
ID: 2829

IQ and Factor Index Score Results

<table>
<thead>
<tr>
<th>Score</th>
<th>Sum of Scaled Scores</th>
<th>Standard Score</th>
<th>Percentile</th>
<th>95% Confidence Interval</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Scale IQ (FSIQ)</td>
<td>105</td>
<td>103</td>
<td>58</td>
<td>99-107</td>
<td>47-68</td>
</tr>
<tr>
<td>Nonverbal IQ (NVIQ)</td>
<td>58</td>
<td>110</td>
<td>75</td>
<td>104-116</td>
<td>61-86</td>
</tr>
<tr>
<td>Verbal IQ (VIQ)</td>
<td>47</td>
<td>96</td>
<td>39</td>
<td>90-102</td>
<td>25-55</td>
</tr>
<tr>
<td>Abbreviated IQ (ABIQ)</td>
<td>23</td>
<td>109</td>
<td>73</td>
<td>100-116</td>
<td>50-86</td>
</tr>
<tr>
<td>Factor Index Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid Reasoning (FR)</td>
<td>22</td>
<td>106</td>
<td>66</td>
<td>97-113</td>
<td>42-81</td>
</tr>
<tr>
<td>Knowledge (KN)</td>
<td>22</td>
<td>106</td>
<td>66</td>
<td>98-114</td>
<td>45-82</td>
</tr>
<tr>
<td>Quantitative Reasoning (QR)</td>
<td>21</td>
<td>103</td>
<td>58</td>
<td>95-111</td>
<td>37-77</td>
</tr>
<tr>
<td>Visual Spatial (VS)</td>
<td>26</td>
<td>117</td>
<td>87</td>
<td>108-124</td>
<td>70-95</td>
</tr>
<tr>
<td>Working Memory (WM)</td>
<td>14</td>
<td>83</td>
<td>13</td>
<td>77-93</td>
<td>6-32</td>
</tr>
</tbody>
</table>

©2003 The Riverside Publishing Company
SB5 Scoring Pro

Excerpt from Narrative Report

Test Results
Kayla earned a Full Scale IQ score of 103 on the Stanford-Binet Intelligence Scales, Fifth Edition. Her current overall intelligence is classified as Average and is ranked at the 58th percentile. There is a 95 percent probability that her 'true' FSIQ is included in the range of scores between 99 and 107.

<table>
<thead>
<tr>
<th>IQ Scores</th>
<th>Standard Score</th>
<th>Percentile</th>
<th>95% Confidence Interval</th>
<th>Descriptive Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Scale IQ (FSIQ)</td>
<td>103</td>
<td>58</td>
<td>99-107</td>
<td>Average</td>
</tr>
<tr>
<td>Nonverbal IQ (NVIQ)</td>
<td>110</td>
<td>75</td>
<td>104-116</td>
<td>High Average</td>
</tr>
<tr>
<td>Verbal IQ (VIQ)</td>
<td>96</td>
<td>39</td>
<td>90-102</td>
<td>Average</td>
</tr>
<tr>
<td>Abbreviated IQ (ABIQ)</td>
<td>109</td>
<td>73</td>
<td>100-116</td>
<td>Average</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor Index Scores</th>
<th>Standard Score</th>
<th>Percentile</th>
<th>95% Confidence Interval</th>
<th>Descriptive Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Reasoning (FR)</td>
<td>106</td>
<td>66</td>
<td>97-113</td>
<td>Average</td>
</tr>
<tr>
<td>Knowledge (KN)</td>
<td>106</td>
<td>66</td>
<td>98-114</td>
<td>Average</td>
</tr>
<tr>
<td>Quantitative Reasoning (QR)</td>
<td>103</td>
<td>58</td>
<td>95-111</td>
<td>Average</td>
</tr>
<tr>
<td>Visual Spatial (VS)</td>
<td>117</td>
<td>87</td>
<td>108-124</td>
<td>High Average</td>
</tr>
<tr>
<td>Working Memory (WM)</td>
<td>83</td>
<td>13</td>
<td>77-93</td>
<td>Low Average</td>
</tr>
</tbody>
</table>

NOTE: An asterisk (*) indicates that the score has been calculated based on prorated test score information.
SB5 Scoring Pro

SB5 Ability-Achievement Discrepancy Analysis

WJ III ® Date of Testing: 1/6/2003
SB5 Ability Score Type: FSIQ
SB5 Ability Score: 103

<table>
<thead>
<tr>
<th>Predicted-Difference Method</th>
<th>Predicted Score</th>
<th>Actual Score</th>
<th>Diff.</th>
<th>Signif.</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ III ® Tests of Achievement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter-Word Identification</td>
<td>102</td>
<td>90</td>
<td>12</td>
<td>.01†</td>
<td><20%</td>
</tr>
<tr>
<td>Calculations</td>
<td>102</td>
<td>95</td>
<td>7</td>
<td>ns</td>
<td>>25%</td>
</tr>
<tr>
<td>Math Fluency</td>
<td>101</td>
<td>102</td>
<td>-1</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Passage Comprehension</td>
<td>102</td>
<td>95</td>
<td>7</td>
<td>ns</td>
<td>25%</td>
</tr>
<tr>
<td>Applied Problems</td>
<td>102</td>
<td>100</td>
<td>2</td>
<td>ns</td>
<td>25%</td>
</tr>
<tr>
<td>Word Attack</td>
<td>101</td>
<td>90</td>
<td>11</td>
<td>.05†</td>
<td><25%</td>
</tr>
<tr>
<td>Reading Vocabulary</td>
<td>102</td>
<td>98</td>
<td>4</td>
<td>ns</td>
<td>>25%</td>
</tr>
<tr>
<td>Quantitative Concepts</td>
<td>102</td>
<td>103</td>
<td>-1</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WJ III ® Composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Reading Skills</td>
<td>102</td>
<td>90</td>
<td>12</td>
<td>.01†</td>
<td><20%</td>
</tr>
<tr>
<td>Reading Comprehension</td>
<td>102</td>
<td>90</td>
<td>12</td>
<td>.01†</td>
<td><15%</td>
</tr>
<tr>
<td>Broad Math</td>
<td>102</td>
<td>99</td>
<td>3</td>
<td>ns</td>
<td>>25%</td>
</tr>
<tr>
<td>Math Calculation Skills</td>
<td>102</td>
<td>99</td>
<td>3</td>
<td>n</td>
<td>>25%</td>
</tr>
<tr>
<td>Math Reasoning</td>
<td>102</td>
<td>105</td>
<td>-3</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

† significant at the .05 level

Choose Predicted Difference or Simple Difference Method
Evaluating Differences between Scores

1. Differences should be statistically significant
2. Magnitude of the difference should be uncommon

4 types of score-differences provided in manual

a. Differences between/among IQ and factor indexes
b. Frequency of IQ and factor indexes differences
c. Differences between single subtest and average of examinee’s subtests
d. Scatter among the subtests in the 2 domains
Frequency of IQ and Factor Index Differences

Table lists cumulative percentage of examinees in the norm sample who obtained each magnitude of absolute difference, from 0 to 40 or greater (TM, p. 169–170, Appendix B, Table B.2).

General rule of thumb: If 15% or less of the population has a difference of that magnitude, it would be considered uncommon.
Differences between Single Subtest Scores and Examinee’s Average

Table lists minimum value needed for statistical significance at the .05 level for subtests within the Verbal Domain and subtests within the Nonverbal Domain (*TM, p. 171, Appendix B, Table B.3*).

Also shows cumulative percentage points (1%, 2%, 5%, 10%, 15%, and 25%) in the distribution for absolute differences between a single subtest and the average.

Option is included to consider all 10 subtests rather than 5 in each domain.
Differences between and among IQ and Factor Indexes

Table lists minimum values required for a significant difference to exist between NVIQ and VIQ and among the 5 factor indexes (TM, p. 168, Appendix B, Table B.1)

Level of statistical significance is .05
(chance of difference being random is 5 out of 100)

Score differences greater than values listed are most likely “real” differences
Differences between Each Pair of Subtests

Compare the nonverbal and verbal subtests within each factor for significant differences *(TM, p. 172, Appendix B, Table B.4)*.

May be helpful in forming hypotheses about the individual’s verbal and nonverbal performance.

Caution:
1. Reliabilities of subtests are lower than composites
2. Number of comparisons is large so it is possible to have 2 significant differences by chance
Scatter among the Subtests
Full Scale and Domain Scores

Useful in identifying strengths and weaknesses in a cognitive profile.

Table lists the cumulative percentage of inter-subtest scatter within the 5 subtest Nonverbal Domain; the 5 subtest Verbal Domain; and for all 10 subtests (TM, p. 175, Appendix B, Table B.5).

General rule of thumb: If 15% or less of the population has a scatter value of that magnitude, it is considered uncommon.
Identification of Learning Disabilities

- Ability-achievement discrepancies
 - Predicted achievement (regression model)
 - Simple difference
 - Statistical significance and frequency of difference (*TM, Appendices C & D*)

- Assessment of specific cognitive abilities
 - May contribute to early identification of academic difficulties
 - Provides an alternative approach
Identification of Learning Disabilities

If comparing the SB5 to the WJ III Tests of Achievement, consult the tables provided in the SB5 Technical Manual, (Appendix C and D).

Comparisons of SB5 Full Scale, Nonverbal, and Verbal IQ scores to 12 WJ III ACH tests and 7 clusters are available.

WJ III ACH Tests
- Applied Problems, Calculation, Letter-Word Identification, Math Fluency, Passage Comprehension, Picture Vocabulary, Quantitative Concepts, Reading Vocabulary, Understanding Directions, Word Attack, Writing Fluency, Writing Samples

WJ III ACH Clusters
- Basic Reading Skills
- Reading Comprehension
- Broad Math
- Math Calculation
- Math Reasoning
- Written Expression
- Academic Applications
Predicted Difference Discrepancy Method

Tables are available in the Technical Manual (Appendix C) for comparing *SB5* IQ scores and selected *WJ III* ACH scores.

- Predicted scores from *SB5* IQ scores
 (pp. 176-190, Tables C.1- C.3)

- Correlations between *SB5* IQ scores and *WJ III* ACH scores (p. 191, Table C.4)

- Differences required for statistical significance
 (pp. 192-193, Tables C.5 & C.6)

- Percentage of population obtaining significant differences (pp. 194-195, Tables C.7- C.9)
Simple Difference Discrepancy Method

Tables are available in the *Technical Manual (Appendix D)* for comparing *SB5* IQ scores and selected *WJ III ACH* scores.

Differences required for statistical significance

- For ages 6-0 through 11-11 (*p. 198, Table D.1*)
- For ages 12-0 through 19-11 (*p. 199, Table D.2*)

Percent of population obtaining significant differences

- Using Full Scale IQ (*p. 200, Table D.3*)
- Using Nonverbal IQ (*p. 201, Table D.4*)
- Using Verbal IQ (*p. 202, Table D.5*)
Early Prediction of Learning Disabilities

New Composite Indexes

LD-Reading =
\[(1.875) \text{NVKN} + \text{VKN} + \text{NVWM} + \text{VWM} + 25\]

LD-Math =
\[(1.875) \text{NVQR} + \text{VQR} + \text{NVWM} + \text{VWM} + 25\]
Calculating Composites

LD Reading

• NVKN = 10 NVWM = 8
• VKN = 5 VWM = 3

• (1.875) times 26 = 48.75
• Add 25 = 73.75
• Round to 74
 (2 SD below average)
Nonverbal Early Prediction of Learning Disabilities or Giftedness

Nonverbal LD Screener = $\text{NVKN} + \text{NVQR} + \text{NVWM}$

Nonverbal Gifted Screener = $\text{NVFR} + \text{NVKN} + \text{NVQR} + \text{NVVS}$
Advanced Interpretation
Core Profiles in the Normative Sample

FLAT PROFILES:
High (9%) Low (11%)
Average (33%)

LOW Verbal (7%)

HIGH Verbal (6%)

HIGH Quantitative (8%)

©2003 The Riverside Publishing Company
Core Profiles from the Normative Sample

- LOW Quantitative Reasoning (8%)
- HIGH Fluid Reasoning (9%)
- LOW Fluid Reasoning (10%)
- High Knowledge (Crystallized) (8%)
Specificity of Subtests

IDEAL Variance: Common > Specific > Error

NONVERBAL Averages:
Common 62% > Specific 24% > Error 14%

<table>
<thead>
<tr>
<th>SUBTESTS</th>
<th>Common</th>
<th>Specific</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVFR</td>
<td>52</td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>NVKN</td>
<td>67</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>NVQR</td>
<td>74</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>NVVS</td>
<td>59</td>
<td>28</td>
<td>13</td>
</tr>
<tr>
<td>NVWM</td>
<td>58</td>
<td>30</td>
<td>12</td>
</tr>
</tbody>
</table>

©2003 The Riverside Publishing Company
Specificity of Subtests

Overall Average:
SB5 is IDEAL! (64% > 22% > 14%)

NONVERBAL Averages:

EXCELLENT PATTERNS

NVFR 52% > 33% > 15%
NVVS 59% > 28% > 13%
NVWM 58% > 30% > 12%

GOOD PATTERN:

NVKN 67% > 18% > 15%

LESS THAN IDEAL:

NVQR 74% > 12% > 14%

©2003 The Riverside Publishing Company
Specificity of Subtests

IDEAL Variance: Common > Specific > Error

VERBAL Averages:
- Common 65% > Specific 21% > Error 14%

<table>
<thead>
<tr>
<th>SUBTESTS</th>
<th>Common</th>
<th>Specific</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR</td>
<td>62</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>VKN</td>
<td>61</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>VQR</td>
<td>73</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>VVS</td>
<td>70</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>VWM</td>
<td>60</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>
Specificity of Subtests

VERBAL Averages:

EXCELLENT PATTERNS

VFR 62% > 23% > 15%
VKN 61% > 28% > 11%
VWM 60% > 24% > 16%

FAIR PATTERN:

VVS 70% > 17% > 13%

LESS THAN IDEAL:

VQR 73% >14% >13%
Interpretation of Change Sensitive Scores (CSS)

<table>
<thead>
<tr>
<th>CSS</th>
<th>Age Equiv</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>525</td>
<td>>21-0</td>
<td>Difficult Verbal Analogy</td>
</tr>
<tr>
<td>500</td>
<td>10-0</td>
<td>Math word problem</td>
</tr>
<tr>
<td>475</td>
<td>5-6</td>
<td>Form Patterns (Walking person)</td>
</tr>
<tr>
<td>450</td>
<td>3-3</td>
<td>Vocabulary (action picture)</td>
</tr>
<tr>
<td>425</td>
<td>< 2-0</td>
<td>Car under the cup</td>
</tr>
<tr>
<td>Objective</td>
<td>Level</td>
<td>Items</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Calculation</td>
<td>2</td>
<td>4, 5, 6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5, 6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>Objective</td>
<td>Level</td>
<td>Items</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Numeration</td>
<td>2</td>
<td>3, 4, 5, 6</td>
</tr>
<tr>
<td>& Number Concepts</td>
<td>3</td>
<td>1, 2, 5, 6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2, 3</td>
</tr>
<tr>
<td>Estimation & Measurement</td>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary
• Covers age range of 2 to 85+ years
• Provides 4 IQ score options
 – Full Scale, Verbal, Nonverbal, and Abbreviated
• Measures 5 Factors
 – Knowledge, Fluid Reasoning, Quantitative Reasoning, Visual-Spatial Processing, and Working Memory
• Provides measurement of all 5 Factors in two domains (Verbal and Nonverbal)
• Offers an optional scoring program
Stanford-Binet Intelligence Scales, Fifth Edition

- Watch for Assessment Service Bulletins (ASB’s)

- Additional Information at www.stanford-binet.com
A Contemporary Assessment

with a Rich Tradition