Primary students decoding mathematics tasks: The role of spatial reasoning

Professor Tom Lowrie
Charles Sturt University
Australia
Introduction

• How we represent mathematics and mathematical ideas shapes students’ thinking

• Visual and graphic representations are increasingly influential in students sense making and everyday lives
Although mathematics curricula has changed little in the past ten years the way in which mathematical ideas are represented and communicated have shifted dramatically.

Different forms of sense making are required as (even young) children become increasingly exposed to visual forms of communication.

Whether playing computer games, navigating web pages, or interpreting the rich design tasks students require a range of spatial reasoning skills to interpret information.
• **Encoding** generally occurs when students construct their own representations in order to solve a task. e.g., drawing diagrams or visualising.

• **Decoding** techniques are used to make sense of information within a given task, when the information has been represented visually for others to solve.
1. Some sparrows are sitting in two trees, with each tree having the same number of sparrows. Two sparrows then fly from the first tree to the second tree. How many sparrows does the second tree then have more than the first tree?

2. A saw in a sawmill saws long logs, each 16m long, into short logs, each 2m long. If each cut takes 2 minutes, how long will it take for the saw to produce eight short logs from one long log?
Discussion

• What strategies did you use to solve the tasks?
• Would the availability of “working out space” have influenced your approach?
Student work samples

Task 1.

![Diagram showing five birds in one tree and seven birds in another tree, with arrows indicating two birds flying over to the next tree.](image-url)
Task 2.

17. $16 = 2^m$, $\log 2^m = 2.23$.

I've learnt that to double check it and be more careful and for each log you need to have one less cut.
Task 2.

17) 16 minutes. The first sentence was not really needed so I paid attention to the second sentence, the answer was pretty straightforward. $\frac{8}{8} \times \frac{2}{16} \text{ mins.}$

14 minutes.

I learnt by drawing a diagram that there was only 7 cuts not eight thus subtracting 2 minutes.
The changing nature of encoding

• What are non graphic tasks measuring?
 - Problem solving skills as opposed to content knowledge
 - Content knowledge as opposed to problem solving skills
 - Or both?
A group of students paid $4 each to see a show. Altogether the group paid $124.

How many students were in the group?

30 31 34 51
Problem solving skills?

1. Some sparrows are sitting in two trees, with each tree having the same number of sparrows. Two sparrows then fly from the first tree to the second tree. How many sparrows does the second tree then have more than the first tree?

2. A saw in a sawmill saws long logs, each 16m long, into short logs, each 2m long. If each cut takes 2 minutes, how long will it take for the saw to produce eight short logs from one long log?
Encoding example from NAPLAN

Question 6

Lin is packing 34 cakes into boxes. Each full box holds 5 cakes.

What is the smallest number of boxes Lin needs to pack all the cakes?

[Answer space]
Question 11

A school has 10 boxes of footballs. Four boxes have 6 footballs in each box. The other boxes have 5 footballs in each box. How many footballs are there altogether?

54
THE INFLUENCE OF DECODING IN ASSESSMENT

Proportion of graphic representations in 2009-10 NAPLAN

<table>
<thead>
<tr>
<th></th>
<th>Yr 3 2009</th>
<th>Yr 3 2010</th>
<th>Yr 5 2009</th>
<th>Yr 5 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Graphic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decoding

- There are three levels of decoding with graphics
 - Elementary — extracting information from the data (reading the data)
 - Intermediate — finding relationships between the data (reading between data)
 - Advanced — moving beyond the data, predicting and generating

Source: Friel, Curcio & Bright, 2001
Changing nature of decoding

Joseph put a mouse at the start of this maze.

It ran through the maze.
It turned right, then right, then left, then left.

Where did the mouse finish?

- A
- B
- C
- D
- E

Jenny leaves the Library and turns right into High Street.
She then turns left at the next corner and walks straight ahead.

Which building does she pass?

- School
- Hospital
- Police Station
- Town Hall

Comparing like tasks

• On similar items 15 years apart…
 - More steps required in the ‘94 task
 - Perhaps higher graphics demands in ‘09 task
 - ‘09 task certainly more contextually rich and ‘realistic’ in nature
Spatial reasoning on a Map task

Above: The Map task as it is presented in the NAPLAN.

Right: Gemma turned the Map 90° clockwise

Jenny leaves the Library and turns right into High Street. She then turns left at the next corner and walks straight ahead.

Which building does she pass?

School Hospital Police Station Town Hall

Jenny leaves the Library and turns right into High Street. She then turns left at the next corner and walks straight ahead.
Spatial orientation

Gemma solving the Map task
A box contains 6 red marbles, 10 blue marbles and 4 yellow marbles.

Which colour marble is impossible to take from the box?

- red
- blue
- white
- yellow

Jess takes 2 pegs out of this bag at the same time.

Which of these is impossible?

- a blue peg and a black peg
- a red peg and a red peg
- a green peg and a green peg
- a yellow peg and a black peg

Above: A Probability task without a graphic

Right: A Probability task with a graphic that is essential in order to answer the task
Decoding the graphic

Barry solving the graphic probability task
Décoding the graphic

Stacy solving the graphic probability task
There are 60 boxes in a van.
There are 6 shops.
Seven boxes are delivered to each shop.

How many boxes are left in the van after shop 6?

Encoding
(without decoding!)

Question 12

There are 60 boxes in a van.
There are 6 shops.
Seven boxes are delivered to each shop.

How many boxes are left in the van after shop 6?

16
Decoding the contextual graphic
Conclusions

• Further research needs to be undertaken on the nature (composition and structure) and intent (what are we measuring?) of graphics tasks in assessment.

• Given the increasing reliance of graphics in society, it is not surprising that graphic representations hold a prominent place in current forms of assessment. And since assessment tends to influence and even drive practice, the way in which mathematics ideas and conventions are represented impact greatly on teaching practices and student learning.
Implications

• A number of practical implications emerge from the study.

• Students are required to decode external representation with more regularity than the process of evoking internal representations through encoding. Although both require high levels of spatial reasoning, most representations are now constructed for the student rather than by the student.

• Students need to acquire different spatial-reasoning skills which allow them to consider all the elements of a task, including specific features of a graphic and the surrounding text, when solving mathematics tasks.
Implications

• The movement away from traditional word-based problem solving, limits students’ opportunities to utilise encoding techniques to make sense of mathematics ideas. If these encoding skills are not encouraged and promoted elsewhere, students’ general reasoning skills will be restricted since such techniques are necessary when students encounter novel or complex problems.

• Conversely, the introduction of mathematics tasks rich in graphics requires a different skill base. Explicit attention needs to be given to specific types of graphics since they have different structure and conventions. Teaching map-based graphics, for example, requires different approaches and techniques than graph-based graphics. Indeed bar graphs and line graphs require specific and independent attention.
Discussion