
79

Coding	in	the	curriculum:	Fad	or	foundational?

Emeritus	Professor	Leon	Sterling	
Swinburne	University	of	Technology,	Victoria	

Professor Leon Sterling received a BSc (Hons)
from the University of Melbourne and a PhD in Pure
Mathematics from the Australian National University.
He has worked at universities in the UK, Israel, the US,
and Australia. His teaching and research specialties
are artificial intelligence, software engineering, and
logic programming. Leon had a range of roles for 15
years at the University of Melbourne, including Head
of the Department of Computer Science and Software
Engineering, Professor of Software Innovation and
Engineering, and Director of e-Research. He served
at Swinburne University of Technology as Dean of
Information and Communication Technologies from
2010–2013 and as Vice Chancellor (Digital Frontiers)
from 2014–2015. He served as President of the
Australian Council of Deans of ICT from 2012–2014.

Introduction
There has been an explosion in mobile devices over the
past decade, with the associated issue of developing
the skilled workforce needed to write the apps that run
on the devices. This has been a significant factor in
highlighting what is taught in schools – STEM education
in particular. For schools, technology – the ‘T’ in STEM –
is primarily digital technology.

This paper concerns what should be taught in digital
technology, and specifically the role of computer coding.
We take it for granted that computers are now essential
in schools, and students need basic computer literacy
skills. Pleasingly, basic computer literacy is a separate
curriculum item from digital technology, and is not the
subject of this paper. Note that naming the discipline
underlying digital technology has been challenging.
Computer science, informatics and computational
thinking have all been suggested and used, with
advocates and detractors for each name.

Computer scientists prefer the term computational
thinking, a position advocated 10 years ago by Jeanette
Wing (2006), with wide adoption. According to Wing,
‘computational thinking involves solving problems,
designing systems, and understanding human
behaviour, by drawing on the concepts fundamental to
computer science.’ Much material has been developed
to teach computational thinking, with Computer
Science Unplugged (Bell et al., 2015) an influential and
representative resource.

Abstract

There has been an unprecedented push to revitalise
interest in STEM education. Much of the discussion
of the ‘T’ in STEM education has centred around
whether coding should be a central element of school
education. This paper investigates arguments for
and against ‘coding in the curriculum’. No sensible
person thinks that teaching coding in the classroom
will produce master programmers, any more than
teaching music in the school curriculum will produce

master musicians. However, the teaching of music
can encourage some students to become musicians,
and the same would be true for coding. The issue
is more what concepts are addressed in teaching
coding, and how essential they are for engendering
an understanding of the digital world around us, and
improving productivity and innovation, for which ICT
skills and capability are essential.

80 Research Conference 2016

Grover and Pea (2013) provide a systematic review of
progress in implementing computational thinking in the
curriculum for the six years immediately following Wing’s
influential position paper; they note the Committee for
the Workshops on Computational Thinking run by the
National Research Council (NRC) in the United States of
America, with associated reports (NRC, 2011). Grover
and Pea take an educational research perspective and
are largely positive.

Where should computational thinking be placed in the
curriculum, and what topics, if any, should it displace?
My personal belief is that computer science is the new
applied mathematics. Just as mathematics applied
itself to the physical world, explaining mechanics
and electro-magnetism, we are currently applying
mathematics to understanding data, information and
knowledge. Thus, computational thinking has a role
in mathematics curriculum, and also in a science
curriculum where insights provided by data add to our
scientific knowledge. Indeed, software is essential to
many physical devices like telescopes and microscopes,
and should be explained as such to students. If students
work in advanced scientific fields, they will be interpreting
the results of programs and they need to understand
how computers operate. Admittedly, there is a lack of
agreement on whether computational thinking should
ultimately be incorporated into education as a general
subject, a discipline-specific topic, or a multidisciplinary
topic (NRC, 2011).

Teaching computer
programming in schools
Rather than focus on computational thinking in this
paper, however, I want to discuss the more contentious
issue of teaching computer programming in schools. As
discussed in Webb et al. (2016):

The distinction between computational thinking and
programming is subtle; in principle computational
thinking does not require programming at all, although
in practice, representing a solution to a problem as a
program provides a perfect way to evaluate the solution,
as the computer will execute the instructions to the letter,
forcing the student to refine their solution so that it is very
precise.

The phrase ‘coding in the curriculum’ seems to be the
current preferred option to programming, presumably
partly because it is catchy. Note that much of the
discussion seems to be happening in social media and
blogs rather than the academic literature.

A case for students learning coding is well-made by
Professor Mitchel Resnick from MIT’s Media Lab in his
2012 TED talk (Resnick, 2012). Resnick is the designer
of Scratch (Resnick et al., 2009), the leading language

for teaching coding to primary students, which is also
used for teaching secondary students. Scratch is a fun
and engaging collaborative environment that has been
popular and successful. Resnick’s argument centres
on the positive design skills that students gain from
undertaking a project with Scratch.

What are the benefits of teaching children to code
from an early age? In my opinion, what is important is
twofold: the thinking engendered by coding, and an
appreciation of what computers can and cannot do,
laying the groundwork for what they may do in the
future. A typical argument in social media is contained
in a blog post (Tufts, 2016) that lists seven benefits.
The benefits fall loosely into three groups: teaching
children general problem-solving and design skills –
essentially the arguments for computational thinking;
introducing the students to the environments they will
be using in the future; and encouraging more students
to take up careers in coding, with benefit to society and
the workforce.

There is merit in students having positive experiences
with environments they are likely to meet later in life.
Scratch and other environments have communities
within them that encourage and enable code sharing,
cooperating and mentoring. Many children have tablets
and other technology, and experience with coding brings
the home and the classroom closer together. However,
experience with the tablet environment is essentially an
argument for digital literacy.

The argument on teaching coding because society
needs more professional coders is a stretch. We teach
music and sport in schools because of the inherent value
in music and sport rather than because we need more
professional musicians and sportspeople. Incidentally,
programmers are often the sharpest critics of teaching
coding, as they think it detracts from the coding
profession. One coding class at school does not make a
professional programmer. However, it can identify talent
and interest.

Pedagogy and positive
outcomes
I would like to address several potential objections to
placing coding in the curriculum. The first argument is
that teaching coding does not come from an adequate
pedagogical basis. In my opinion, the pedagogy is under
control. There is consensus that Scratch works well.
Concepts underlying Scratch are drawn from a tradition
of research dating back to Seymour Papert in the 1960s,
1970s and 1980s. The key features of using a block-
based programming language, avoiding children having
to worry about minor syntax issues, being able to rapidly
see the results of executing programs, and being able
to draw on a rich library of multimedia are all significant.

81

And Scratch is not the only option. In recent years, there
has been an increase in the number of programming
environments that are freely available for use by
novice programmers, particularly children and young
people (Good, 2011). There is much training material
of high quality, including Codecademy (https://www.
codecademy.com); Code Club in the UK and Australia
(https://www.codeclub.org.uk and
http://www.codeclubau.org) and elsewhere; Code.org
(http://code.org); and commercial providers such as
Tynker(https://www.tynker.com), to name a few. To some
extent, market forces have ensured suitable pedagogy.

The second argument is that there is no evidence
base establishing that coding is beneficial. That is not
correct, but the evidence is primarily anecdotal, rather
than from random experimental trials. A typical effort to
introduce programming to primary schoolchildren, using
Scratch, is described in Wilson and Moffat (2010). From
the abstract:

[W]e used Scratch to teach some elementary
programming to young children (eight years old) in their
ICT class, for eight lessons in all. Data were recorded
to measure any cognitive progress of the pupils, and
any affective impact that the lessons had on them. The
children were soon able to write elementary programs,
and moreover evidently had a lot of fun doing so. An
interview with their teacher showed that some of the
pupils did surprisingly well, beyond all expectations.

As Wilson and Moffat comment:

While the cognitive progress is moderate, the main
advantage to Scratch in this study seems to be that its
enjoyability makes learning how to program a positive
experience, contrary to the frustration and anxiety
that so often seems to characterise the usual learning
experience.

While a rigorous trial is preferable to anecdotal evidence,
the difficulties of running a rigorous experiment should
be acknowledged. It is difficult to justify running control
groups where some students gain the benefit of learning
coding and others do not. It is hard to have comparable
teaching. The passion and skills of the teacher are
currently influential on how successful classes are in
teaching coding. As languages are rapidly evolving, it is
not clear what standards should be used for evaluating
trials of technology. There should be active discussions
about what the evidence should be. There are active
discussions about assessment, as noted by Grover and
Pea (2013) and others.

The next potential objection is that the push for coding is
primarily about vested interests. Indeed, vested interests
influenced the push for computers in the classroom.
Negative experiences in introducing computers in the
classroom might deter some people from trying to
teach coding. Large multinational companies like to

lock schools into their particular products. However,
advocating for teaching coding in the curriculum is
different to advocating for computers in the classroom.
The drivers for coding are public interest groups as well
as vendors, and there are quality resources that are free
and open-source. Nonetheless, there is considerable
scope for research on distinguishing between
claims of competing products and environments for
teaching coding.

It is significant that there is much collaboration
happening between academic interests and industry. For
example, two initiatives aimed at introducing computing
into schools, CS4HS (http://www.cs4hs.com) and the
Code.org Advocacy Coalition, represent collaboration
between academia, national bodies, and industry
leaders such as Microsoft and Google. The Computer
Science Teachers Association’s Model Curriculum for
K–12 Computer Science, supported by the Association
for Computing Machinery (the largest computing
professional association) provides suggestions to help
engage and motivate students (https://csta.acm.org/
Curriculum/sub/
CurrResources.html). Google’s Exploring
Computational Thinking website
(http://www.google.com/edu/computational-thinking)
has a wealth of links to web resources.

Another complaint is that current popular Scratch-like
environments for students are too limited to learn the
important concepts in programming. That concern is
being addressed. Snap! (http://snap.berkeley.edu) is a
well-designed extension which is used in Algorithmics,
the Victorian VCE subject. Other environments facilitate
transition from a block-based language to the text-based
syntax used in industry. For example, Code.org facilitates
transition from a Scratch-like block-based language to
the JavaScript language.

Coding in the curriculum
Let us reconsider the place of coding in the curriculum.
Is there a compelling rationale for all children, including
those who allege no interest in pursuing STEM careers,
to learn coding in school? Space can be made in
the curriculum by connecting coding to mathematics
and science lessons. Computing examples and well-
designed exercises can highlight the relevance of maths
and science. Recognising faces, translation between
languages, and searching in large collections can all be
explained in terms of data, and provide practical and
interesting experiences for using coding and scientific
methods. Computing projects can easily be structured
to give students experience with important generic skills
such as persistence, collaboration and communication.
Overall, I believe that coding is foundational.

What about year level? The Australian curriculum for
digital technology sets objectives for each year level from

82 Research Conference 2016

K–10. The approach is ambitious, but well structured.
Coding should be a key component of meeting the
digital technology curriculum objectives.

There has been some discussion that learning a
computer language is like learning a foreign language.
Indeed, earlier this year, a bill was approved in the
Florida senate allowing high school students to take
computer coding classes in place of foreign language
requirements. That is not a position I support.
Supporting science and mathematics is a better place
for coding in the school curriculum than replacing the
teaching of second languages. Using language is about
communicating with people and recognising the culture
from which the language emanates. Communication
between people is fundamentally different from
communicating between human and computer.

Worldwide there is momentum behind teaching coding.
Many countries are experimenting with including coding
in the school curriculum. Last year, the Australian
Labor Party issued a platform entitled ‘Coding in Every
Australian School’. Webb et al. (2016) discuss vignettes
from five countries: the United Kingdom, New Zealand,
Australia, Israel, and Poland, where programming
is in the curriculum. Much can be learned from
these experiences.

One concern is that teachers may not have the skills
to teach computer coding correctly. Resources are
being prepared. In May, the Australian Department of
Education awarded a project after a tender for National
Computing Challenges for Year 5 & 7 and Cracking
the Code, which are helping with teacher and student
resources.

Competitions are growing. The ACER Australian STEM
Video Game Challenge (https://www.stemgames.org.au)
introduced in 2014 has had excellent uptake. Learning to
code games is fun and exciting, and can spark interest
in digital technology.

Summary
In summary, what have we learned so far about teaching
coding in the curriculum? Plenty of experimentation is
happening. Projects introducing coding through Scratch
or similar positive environments are largely successful.
Teaching computing can be made to be engaging,
though perhaps not to everybody. Being able to see the
results of executing the code immediately is essential.
Curriculum material is being developed. The lack of
resources for teachers is being addressed, though
there is a challenge to produce resources in time. Note
that the block-based languages are more accessible to
teachers, just as they are for students, such that many
more teachers are able to create or modify resources.

My personal opinion is that coding should be taught in
all schools. While it is not necessary nor realistic that
all students become coders, it is important that they
appreciate what computers do and how they do it.
The best way I know of conveying the understanding
is by having students code. Some students struggle to
learn to code. However, without attempting to code,
something essential is missing.

References
Barr, V. & Stephenson, C. (2011). Bringing computational

thinking to K–12: What is involved and what is the role
of the computer science education community? ACM
Inroads, 2(1), 48–54.

Bell T., Andreae, P. & Robins A. (2014). A Case Study
of the Introduction of Computer Science in NZ
Schools. ACM Transactions on Computing Education,
14(2), 1-31. http://dl.acm.org/citation.cfm?doi:
2642651.2602485

Bell, T., Witten, I. H. & Fellows M. (2015). CS Unplugged,
An enrichment and extension programme for primary-
aged students. Adapted for classroom use by Robyn
Adams and Jane McKenzie. 2015 Revision by Sam
Jarman.

Connell, A., Hramiak, A. & Edwards, A. (2015). A
Practical Guide to Teaching Computing and ICT in the
Secondary School (2nd edition). Abingdon, United
Kingdom: Routledge.

Good, J. (2011). Learners at the Wheel: Novice
Programming Environments Come of Age.
International Journal of People-Oriented
Programming, 1(1), 1–24.

Grover, S. & Pea, R. (2013). Computational thinking in
K–12: A review of the state of the field. Educational
Researcher, 42(1), 38–43.

Moreno-León, J., Robles, G. & Román-González, M.
(2015). Dr. Scratch: Automatic Analysis of Scratch
Projects to Assess and Foster Computational
Thinking. Revista de Educación a Distancia, No. 46.
http://www.um.es/ead/red/46/moreno_robles.pdf

National Research Council. (2011). Committee for the
Workshops on Computational Thinking: Report of a
workshop of pedagogical aspects of computational
thinking. Washington, DC: National Academies Press.

Resnick, M. (2012). Let’s Teach Kids to Code. https://
www.ted.com/talks/mitch_resnick_let_s_teach_kids_
to_code?language=en#t-214742

Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., Eastmond, E., Brennan, K., Millner,
A., Rosenbaum, E., Silver, J., Silverman, B. &

83

Kafai, Y. (2009). Scratch: Programming for all.
Communications of the ACM 52(11) 60–67 http://
dx.doi.org/10.1145/1592761.1592779

Rutstein, D. W. & Grover, S. (2016). Measuring Student
Learning about Computing. https://www.sri.com/
blog/measuring-student-learning-about-computing

Shein, E. (2014). Should everybody learn to code?
Communications of the ACM, 57(2), 16–18.

Tufts, P. (2016). 7 Lifetime Benefits of Teaching Coding
Games for Kids to Your Kids. http://learntocode.biz/7-
lifetime-benefits-of-teaching-coding-games-for-kids-
to-your-kids

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N.,
Chambers, D. P. & Sysło, M. M. (2016). Computer
science in K–12 school curricula of the 21st century:
Why, what and when? Education and Information
Technologies, (pp. 1–24).

Wilson, A. & Moffat, D. (2010) Evaluating Scratch to
introduce younger schoolchildren to programming.
Proceedings of the 22nd Annual Workshop of
the Psychology of Programming Interest Group,
Cambridge, UK. http://scratched.gse.harvard.edu/
sites/default/files/wilson-moffat-ppig2010-final.pdf

Wilson, C. & Guzdial, M. (2010). How to make progress
in computing education. Communications of the
ACM, 53(5), 35–37.

Wing, J. M. (2006). Computational Thinking.
Communications of the ACM, 49(3), 33–35.

