
78 Research Conference 2019Australian Council for Educational Research

Daniel Duckworth
Australian Council for Educational Research

Daniel Duckworth is a Research Fellow in the
Assessment and Psychometrics Research Division at
ACER, where he has worked from 2007–2013 and from
2016–present. He has worked on a variety of projects
such as the 2009 International Civic and Citizenship
Education Study, the Programme for the International
Assessment of Adult Competencies, the National
Assessment Program ICT Literacy (2008, 2011,
2017), the International Computer and Information
Literacy Study (ICILS) in 2013 and 2018, and Critical
and Creative Thinking assessments for the Victorian
Curriculum and Assessment Authority (2015). Daniel
specialises in computer and information literacy (CIL)
and is a co-author of the ICILS 2018 Assessment
Framework, ICILS 2018 Public Report and NAP ICT
Literacy 2017 Public Report. Daniel’s work extends
beyond the assessment of CIL and includes research
on the way natural language processing algorithms can
be used to analyse assessment response data. Daniel
is also part of the General Capabilities Assessment
(GCA) development team, a project of the Centre for
Assessment Reform and Innovation. His work on the
GCA has contributed to the conceptualisation of the
critical thinking, creative thinking and collaboration
frameworks and the operationalisation of those
frameworks in assessment instruments that are being
trialled in schools in Queensland and Victoria.

Assessing computational thinking

Abstract

This paper provides some context for the role of computation thinking (CT) in the Australian Curriculum, an
abridged literature review of CT as a problem-solving framework from the ICILS 2018 assessment framework
and some examples of how CT has been used to solve real-world problems. Finally, this paper presents ways
to teach and assess CT.

79 Research Conference 2019Australian Council for Educational Research

Assessing computational thinking

Computational thinking and the
Australian Curriculum
The National Assessment Program (NAP) began as
an initiative of ministers of education in Australia to
monitor outcomes of schooling specified in the 1999
Adelaide Declaration on National Goals for Schooling in
the 21st Century (Adelaide Declaration). The NAP was
established to measure student achievement and to
report this against key performance measures in relation
to the national goals, using nationally comparable data
in each of literacy, numeracy, science, and information
and communication technologies (ICT). In 2008, the
Adelaide Declaration was superseded by the Melbourne
Declaration on the Educational Goals for Young
Australians (Melbourne Declaration).

In 2010, the Australian Curriculum and Assessment
Reporting Authority (ACARA) released the Australian
Curriculum, which organised the curriculum into
learning areas. General capabilities were introduced
to the Australian Curriculum in 2012, including the ICT
capability, and in 2014 the technologies F–10 learning
area was added. This draws together the subjects
of design technologies and digital technologies. In
the Australian Curriculum, subject content includes
descriptions of what students are expected to learn.
These include knowledge, understanding and skills,
described at a year level or band of years. The content
descriptions are accompanied by content elaborations
that give teachers ideas about how they might teach the
content. Within the digital technologies subject content,
the curriculum refers to CT and is defined as:

A problem-solving method that involves various
techniques and strategies that can be implemented
by digital systems. Techniques and strategies may
include organising data logically, breaking down
problems into parts, defining abstract concepts and
designing and using algorithms, patterns and models
(ACARA, 2014).

From Foundation to Year 2, students develop
skills in CT to understand digital systems to
organise, manipulate and present data and begin
to conceptualise algorithms as a sequence of steps
for carrying out instructions. One example given in
the content descriptions is identifying the significant
steps of making a sandwich. At the most basic level a
student might simply provide the instruction, ‘make a
sandwich’. However, as students develop skills in CT
they are able to differentiate between a process and a
set of instructions required to complete a process by
identifying significant steps such as ‘put the bread flat
on the table’, ‘open the jar’, ‘put the knife in the jar’ etc.
Sample portfolios accompany the content descriptions
that showcase student work that is satisfactory, above

satisfactory or below satisfactory. One such example
at Foundation to Year 2 is a video demonstration of
students who have developed a sequence of steps
to program a Bee-Bot® (a small physical robot) to
navigate an 8 × 10 grid. Another example at Years 5
and 6 is a video interview with a student who describes
a computer network. The student describes the steps
involved in sharing information between computers,
including the need for a specialised computer (a server
or DNS) that distributes unique addresses to other
computers (clients) in a network. The student also
contextualises this abstract digital system by describing
the way it helps her collaborate with her classmates by
using a shared folder to share files.

Computational thinking as conceptualised by
the ICILS 2018

One aspect of learning to use computer technologies
focuses on learning the foundational principles of
computing. This aspect was evident in the early stages
of the introduction of computers into classrooms in terms
of arguments that saw the links between ‘programming’
and problem-solving as important for educational
development (Papert, 1980). In the 1980s, the Logo
language used commands to move a cursor or robot (a
turtle) on a screen and line graphics. Many educational
approaches closely linked to constructionism and
oriented to cognitive development were based on Logo
(Maddux & Johnson, 1997; McDougall, Murnane, & Wills,
2014; Tatnall & Davey, 2014).

Since those early developments, visual programming
languages (where programs are created by manipulating
program elements, or blocks, graphically) for children
have emerged in addition to text-based programming
languages. Scratch is an example of a visual
programming language in which students use simple
blocks of code to develop projects (Ortiz-Colon & Marato
Romo, 2016). Scratch has a potential role in helping
cognitive and meta-cognitive development, as well as
providing opportunities for introducing the principles of
computing in a practical and productive way.

Shute, Sun & Asbell-Clarke (2017, p. 142) argued that
CT is required to solve problems algorithmically (with
or without the assistance of computers) by applying
solutions that are reusable in different contexts.
They elaborated that CT is ‘a way of thinking and
acting, which can be exhibited through the use of
particular skills, which then can become the basis
for performance-based assessments of CT skills.’
They suggested that CT involves six elements:
decomposition, abstraction, algorithm design,
debugging, iteration and generalisation. The ICILS 2018
assessment framework defines CT as ‘an individual’s
ability to recognize aspects of real-world problems

80 Research Conference 2019Australian Council for Educational Research

which are appropriate for computational formulation and
to evaluate and develop algorithmic solutions to those
problems so that the solutions could be operationalized
with a computer’ (Fraillon et al., 2019).

Solving real-world problems with
computational thinking

Numerous real-world problems have been solved with
computational thinking. In 1936, Alan Turing invented
the automatic machine (more commonly known as the
Turing machine), a mathematical model of computation.
Global communications via the internet were enabled by
the development of the TCP/IP protocol by the Defense
Advanced Research Projects Agency (DARPA) in the late
1960s (Cerf & Edward, 1983).

The Byzantine generals’ problem (Lamport, Shostak,
& Pease, 1982) was solved by combing Merkle Trees
and cryptography to create blockchain technology (an
immutable and distributed ledger), further enabling
censorship resistant applications and decentralised
cryptocurrencies such as Bitcoin (Nakamoto, 2008).
Computer vision has surpassed human performance
(He, Zhang, Ren, & Sun, 2015) to enable autonomous
vehicles assisted by cameras and is the result of deep
learning algorithms that utilise the perceptron (Minsky
& Papert, 1969), stochastic gradient descent (Bottou,
2004) and backpropogation (Hecht-Nielsen, 1992).

Examples of CT curriculum and assessment

CT does not necessarily involve developing or
implementing a formal computer code (Barr, Harrison,
& Conery, 2011). Wing (2006, p. 33) argued that the
concept of CT is applicable to all individuals rather than
just computer scientists. Goode and Chapman (2013)
developed the curriculum resource Exploring Computer
Science (ECS) to help elaborate the meaning of CT. This
curriculum package includes resources, lesson plans,
and professional development for teachers. Its focus
is on ‘conceptual ideas of computing’, but it includes
consideration of ‘computational practices of algorithm
development, problem-solving and programming’
(Goode & Chapman, 2013, p. 5) in contexts of real-life
problems (using the Scratch programming tools).

ECS is linked to the Principled Assessment of
Computational Thinking (PACT; see https://pact.sri.com/
index.html), which is concerned with the assessment
of secondary computer science outcomes (Rutstein,
Snow, & Bienkowski, 2014). This approach involves
designing ‘assessment tasks to measure important
knowledge and practices by specifying chains of
evidence that can be traced from what students do’
(Bienkowski, Rutstein, & Snow 2015, p. 2; see also
Grover, Pea, & Cooper, 2015; Grover, 2017). PACT is
based on design patterns for major CT practices and

involves judging the quality of the instructions (or coding
steps) that have been assembled.

There have also been other approaches to the
assessment of CT. Chen et al. (2017) developed an
instrument for primary school students to assess CT
that was based on coding in robotics and reasoning of
everyday events and linked to a ‘robotics curriculum’.
Zhong, Wang, Chen, & Li (2016) developed a three-
dimensional assessment framework based on the
concepts of directionality, openness and process. The
assessment included three pairs of tasks that were
based on a three-dimensional programming language:
i) closed forward tasks and closed reverse tasks,
ii) semi-open forward tasks and semi-open reverse
tasks, and iii) open tasks with a creative design report
and open tasks without a creative design report.
Students’ codes were assessed by the research
team based on sets of rubrics reflecting elements of
CT. They concluded that semi-open tasks were more
discriminating than others, but that a combination of
tasks was needed to assess the various elements of CT.
What appear to be common elements in assessments
of CT are the capturing of instructions developed by
students (almost always using a computer environment)
and the judging of the quality of those instructions
against a set of criteria reflecting aspects of CT.

Visual coding approaches are of relevance for
assessing CT, as they focus on the algorithmic logic
underpinning coding across all coding tasks. A visual
coding environment is also considered to be accessible
to novice users and translatable (code block names
can be translated into the target languages) while
eliminating the confounding effect of keyboard errors
because no typing of code is involved. Assessments of
CT are typically set in computer environments because
those facilitate the capturing of the data that reflect the
steps in problem-solving. These steps usually involve
developing or assembling instructions (often including
blocks of code) that are necessary to accomplish a task
(Brennan & Resnick, 2013).

The ICILS 2018 included two assessment modules that
assessed two strands of CT: one on conceptualising
problems and the other on operationalising solutions
(Fraillon et al., 2019). The tasks in the CT module
focused on conceptualising problems related to
planning aspects of a program to operate a driverless
bus. This included visual representation of real-world
situations in ways to support the development of
computer programs to execute automated solutions.
Examples of these are path diagrams, flow charts,
and decision trees. Further tasks related to the use
of simulations to collect data and draw conclusions
about real-world situations that can inform planning
the development of a computer program. In the
operationalising solutions module, students worked
within a simple visual coding environment to create,

81 Research Conference 2019Australian Council for Educational Research

test and debug code (blocks of code that have some
specified and some configurable functions) to control
the actions of a drone used in a farming context. In
this module, the tasks were incrementally more difficult
as the students advanced through the assessment.
The difficulties of the tasks related to the variety of
code functions that are available and the complexity
of the sequence of actions required by the drone for
completion of the task objectives.

Scoring students’ responses to a task involved
capturing how many of the task objectives were
completed, whether any irrelevant actions were
performed by the drone and the efficiency with which
the objectives were completed. Students that could
develop an algorithm that completed exactly all the
objectives with the minimum necessary code blocks
received the highest score. Students that used more
code blocks than necessary, completed some of the
objectives or included irrelevant actions for the drone
received partial credit.

References
Australian Curriculum and Reporting Authority (ACARA)

(2012). The Australian Curriculum: technologies, key
ideas. Sydney, NSW: ACARA. Retrieved from https://
www.australiancurriculum.edu.au/f-10-curriculum/
technologies/key-ideas/

Barr, D., Harrison, J., & Conery, L. (2011).
Computational thinking: A digital age skill for
everyone. Learning and Leading with Technology,
38(6), 20–23.

Bienkowski, M., Rutstein, D., & Snow, E. (2015).
Computer science concepts in the next generation
science standards. Paper presented at the 2015
annual meeting of the American Educational
Research Association (AERA), Chicago, IL. Retrieved
from https://www.aera.net/Publications/Online-
Paper-Repository/AERA-Online-Paper-Repository

Bottou, L. (2004). Stochastic learning, Advanced
Lectures on Machine Learning, LNAI, 3176. doi:
10.1007/b100712

Brennan, K., & Resnick, M. (2013). Imagining, creating,
playing, sharing, reflecting: How online community
supports young people as designers of interactive
media. In C. Moza & N. Lavigne (Eds.), Emerging
technologies for the classroom: A learning sciences
perspective (pp. 253–268). New York, NY: Springer.
Retrieved from https://doi.org/10.1007/978-1-4614-
4696-5

Cerf, V. G., & Edward, C. (1983). The DoD internet
architecture model. Computer Networks, 7(5),
307–318. doi.org/10.1016/0376-5075(83)90042-9

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang,
X., & Eltoukhy, M. (2017). Assessing elementary
students’ computational thinking in everyday
reasoning and robotics programming. Computers &
Education, 109, 162–175. Retrieved from https://doi.
org/10.1016/j.compedu.2017.03.001

Fraillon, J., Ainley, J., Schulz, W., Ainley, J., Duckworth,
D., & Friedman, T. (2019). International Computer
and Information Literacy Study 2018: Assessment
framework. Cham, Switzerland: Springer.

Goode, J., & Chapman, G. (2013). Exploring computer
science. Menlo Park, CA: Stanford Research
International (SRI).

Grover, S. (2017). Designing programming tasks for
measuring computational thinking. Paper presented
at the Annual Meeting of the American Educational
Research Association, San Antonio, TX.

Grover, S., Pea, R., & Cooper, S. (2015). Systems of
assessments for deeper learning of computational
thinking in K–12. Paper presented at the Annual
Meeting of the American Educational Research
Association, Chicago, IL.

He, K., Zhang, X., Ren, S., & Sun, J. (2015).
Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. In
Proceedings of the IEEE International Conference on
Computer Vision (pp. 1026–1034).

Hecht-Nielsen, R. (1992). Theory of the
backpropagation neural network, based on
Proceedings of the International Joint Conference on
Neural Networks 1, 593–611, June 1989, Academic
Press, 65–93.

Lamport, L., Shostak, R., & Pease, M. (1982). The
Byzantine generals’ problem. ACM Transactions
on Programming Languages and Systems, 4(3),
382–401.

Maddux, C. D., & Johnson, D. L. (1997). Logo:
A retrospective. Computers in the Schools
Monographs/Separates, 14(1–2). New York, NY:
CRC Press.

McDougall, A., Murnane, J., & Wills, S. (2014). The
education programming language Logo: Its nature
and its use in Australia. In A. Tatnall & B. Davey
(Eds.), Reflections on the history of computers in
education: Early use of computers and teaching about
computing in schools. IFIP Advances in Information and
Communication Technology Vol. 424. Berlin,
Germany: Springer.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons.
Cambridge, MA: MIT Press.

https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/key-ideas/
https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/key-ideas/
https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/key-ideas/
https://www.sciencedirect.com/science/article/pii/S0360131517300490?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0360131517300490?via%3Dihub

82 Research Conference 2019Australian Council for Educational Research

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. Retrieved from https://bitcoin.org/bitcoin.
pdf

Ortiz-Colon, A. M., & Marato Romo, J. L. (2016).
Teaching with Scratch in compulsory secondary
education. International Journal of Emerging
Technologies in Learning, 11(2), 67–70. Retrieved
from https://doi.org/10.3991/ijet.v11i02.5094.

Papert, S. (1980) Mindstorms: Children, computers, and
powerful ideas. New York, NY: Basic Books.

Rutstein, D. W., Snow, E. B., & Bienkowski, M. (2014,
April). Computational thinking practices: Analyzing
and modeling a critical domain in computer science
education. Paper presented at the annual meeting
of the American Educational Research Association,
Philadelphia, PA.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017).
Demystifying computational thinking. Educational
Research Review, 22, 142–158. Retrieved from
https://doi.org/10.1016/j.edurev.2017.09.003

Tatnall, A. & Davey, B. (Eds.), Reflections on the history
of computers in education: Early use of computers
and teaching about computing in schools. IFIP
Advances in Information and Communication
Technology Vol. 424. Berlin, Germany: Springer.

Turing, A.M. (1936). On computable numbers, with
an application to the Entscheidungs problem.
Proceedings of the London Mathematical Society.
42(1), 230–265.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49, 33–35.
doi:10.1145/1118178.1118215

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016).
An exploration of three-dimensional integrated
assessment for computational thinking. Journal of
Educational Computing Research, 53(4), 562–590.
Retrieved from https://journals.sagepub.com/doi/
pdf/10.1177/0735633115608444

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://journals.sagepub.com/doi/pdf/10.1177/0735633115608444
https://journals.sagepub.com/doi/pdf/10.1177/0735633115608444

